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Introduction: General background  

- It is known that text-prompted speaker verification systems have 
vulnerability to text-to-speech (TTS) systems

- TTS systems assumed so far
- Unit selection TTS systems + GMM-based voice conversion 

- Any utterances can be synthesized from only text inputs 
- Output waveforms of the synthesizer can be transformed into a 

specific targeted personʼs voice using the voice conversion

- TTS systems in our talk 
- HMM-based TTS systems + speaker adaptation (e.g. MLLR)

- Speaker adaptation can transform speaker-independent 
HMMs into the targeted personʼs model 

- Any utterances can be synthesized from the adapted models  
- This problem was first reported by Masuko et al. 10 years ago



Introduction: Why do we revisit?   

- Why do we revisit this issue?
- The performance of the HMM-based TTS was drastically improved   
- The quality of HMM-based speech synthesis is now comparable 

with unit selection and its intelligibility outperforms unit selection
- Enhanced speaker adaptation techniques for TTS

- Unsupervised adaptation 
- We donʼt need to provide labels for adaptation data
- Two or multi-pass approaches similar to ASR

- Robust adaptation
- Noisy data can be used for the adaptation

- It is now possible to automatically create targeted speakersʼ TTS 
voices from any accessible audios which attackers can find.

- e.g. Audio files available on the web 



Attacking scenarios to be assumed
- Speech data is acquired from broadcast, podcasts, lectures, telephone
- Using the acquired speech data, adapt HMM-based TTS systems in 

advance
- Using the adapted models, synthesize speech for verifications
- Actual synthetic speech samples created in this scenario 

- George W Bush podcast: 
- Synthetic speech samples generated from HMMs adapted using 

speech data found on his podcasts  
- Sample
- Real-time demo [web]

- Queen Elizabeth IIʼs podcast 
- Synthetic speech samples generated from HMMs adapted using 

speech data found on her podcasts  
- Sample  

http://homepages.inf.ed.ac.uk/jyamagis/demos/page35/page35.html
http://homepages.inf.ed.ac.uk/jyamagis/demos/page35/page35.html


Our previous experiments (ICASSP 2010)  

- Speech synthesis databases 
- Perfectly clean read speech
- Only 10 German speakers  

- Two SV systems tested 
- The standard GMM-UBM method 
- Gaussian super-vectors with SVM [C. Longworth and M. Gales 2009]
- with score normalisation, feature warping/normalisation etc.

- No significant differences from attacker points of view
- In most of the cases, the SV system will accept a claim from a 

synthetic voice
- Report only the GMM-UBM method in this talk



Our previous experiments (ICASSP 2010)  
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Score distributions for human and synthetic speech for 
both imposter and true claimants are nearly identical!
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Problems of our previous experiments

- The number of speakers is too small
- Perfectly clean speech conditions (In our attacking scenarios, speech 

data acquired is assumed to be not perfectly clean)



Whatʼs new

- More speakers: 300 speakers! 
- WSJ corpora SI284 set 
- Not perfectly clean / office environments 
- More realistic conditions 

- Report the accuracy of the conventional method to detect synthetic 
speech in SV systems  

- Satoh et al. reported a method to detect synthetic speech in SV 
systems in 2001 

- However, the quality of synthetic speech becomes much better 
than 2001 

- Re-evaluate the method to confirm the problem of imposture using 
speaker-adaptive HMM-based synthetic speech



GMM-UBM speaker verification system

- GMM-UBM
- 1024 components 

- Features 
- 15 MFCC, 15 Δ-MFCC, log-energy, Δ log-enery
- Feature warping to improve robustness [J. Pelecanos and Sridharan]

- Adaptation 
- MAP adaptation (mean vector only)

- Performance on the NIST 2002 corpus 
- 330 speakers
- 12.10% EER
- Comparable performance with [C. Longworth and M. Gales 2009]



Speaker-adaptive HMM-based speech synthesis 

Target Speaker

Hello!!

Average Voice

Hello!!

Speaker Adaptation

Adaptation data

Average Voice Model Target Speaker’s Model

- How to construct the average voice model
- Speaker adaptive training (SAT) [T. Anastasakos et al. ʼ96]

- How to transform model parameters of the average voice models 
- Speaker adaptation techniques for HMMs

- Maximum likelihood linear regression (MLLR) [C. Leggetter et al ʼ95]
- Structural MAP estimation of CMLLR [J. Yamagishi et al ʻ05]

- How to generate acoustic parameters and synthesize speech
- Maximum-likelihood parameter generation algorithm [K. Tokuda ʼ95]
- STRAIGHT vocoder [H. Kawahara ʻ2002]



Rapid voice building 
- We can rapidly create TTS voices from 3 mins of speech data only 
- Currently 2000 voices are created from various sources



Experiments – Data

- Our scenario is not building TTS systems on speaker verification 
databases, which are normally narrow band with noises

- Wall street journal corpora (WSJ0 and WSJ1)
- 283 speakers (included in SI-284 set)
- Divide the SI-284 speaker material into 3 sets, A, B, and C
- Set A: TTS training data

- Training of average voice models
- Speaker adaptation (CMLLR) to individual speakers

- Set B: SV training data
- Training of the universal background model 
- Speaker adaptation (MAP) to individual speakers 

- Set C: Test data (30 sec/speaker)
- Assumed to be speech reading text-prompts used for verifications 

- Samples of synthetic speech created 



Experiments – Performance of SV systems

- Decision-error-tradeoff (DET) curve for human speech 

- Equal-error-rate is 0.4% (speaker verification of human speech on WSJ 
corpus is relatively easy) 
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Experiments – Human speech vs. Synthetic speech
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- Score distributions of human speech and synthetic speech  

- In matched claimant tests (synthesized voices claim to be their human 
counterparts), about 90% of synthetic speech claims was accepted! 
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Summary so far 

- Despite the excellent performance of the SV systems (0.4% EER), the 
speaker identity of the synthesized speech generated from speaker-
adaptive HMM-based speech synthesis is high enough to allow these 
synthesized voices to pass for true human claimants (90% voices 
were accepted!).

- Adjustments in decision thresholding or standard score normalisation 
techniques are unlikely to differentiate between human and 
synthesized speech

- How can we differentiate them?
- Detection methods used in the conventional studies 

- Inter-frame differences of log likelihood (IFDLL)                  
[Satoh et al. 2001]

- ASR word error rates 
- Are they still secure for the latest HMM-based speech synthesis?



- In 2001 Satoh. et al. reported that 
- the average of the inter-frame difference of log-likelihood (IFDLL)

- can be used to detect synthetic speech because 
- Synthetic speech generated from HMMs tended to have over-

smoothed trajectories (smaller average IFDLL) at that time
- Synthetic speech using unit-selection tends to have ʻjumpʼ at 

bad concatenation points (larger average IFDLL)

- However the current HMM-based speech synthesis includes global 
time variation models [Toda et al. 2005], which can avoid the over-
smoothing of trajectories.

Average inter-frame difference of log-likelihood

∆n = | log p(xn|λC)− log p(xn−1|λC)|

∆̄ =
1
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Results for the average IFDLL 

With state-of-the-art HMM-based synthesis this measure is no longer 
robust enough for detecting synthetic speech!
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- In the speech perception field, synthetic speech generated using unit 
selection is known to have less intelligibility than human speech 

- It might be possible to see the intelligibility of speech via WERs of ASR

- Two grammars tested 
- However, synthetic speech was found to have better WERs than human 

speech on both grammars, even if the adaptation data is 73 sec of 
speech data

- Not ideal to utilise the WERs of ASR to detect synthetic speech

ASR word error rates (WER)



Conclusions and future work

- Despite the excellent performance of the SV systems, the speaker 
identity of the synthesized speech generated from speaker-adaptive 
HMM-based speech synthesis is high enough to allow these 
synthesized voices to pass for true human claimants.

- This implies that speech data available from e.g. podcasts can be 
used for imposture in SV systems

- The conventional method using IFDLL to detect synthetic speech is no 
longer robust enough 

- We need to develop new features or strategies to discriminate them!
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