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Outline of this Talk

@ Harmonic Structure Transform
@ Experiment: closed-set classification, 10-second trials

@ matched-multisession, matched-channel conditions
o contrast with get_f0-estimated pitch
@ contrast with MFCCs

O Analysis

o simulated perturbations
o spectral envelope ablation

@ Conclusions
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Noll dubbed this “harmonic compression”. M

(Distinctly non-linear.)

A M. R. Schroeder, 1968. “Period histogram and product spectrum: n=3
New methods for fundamental-frequency measurement”, J. Acoust.

Soc. Am. 43(4):829-834.
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Dirac Comb Filterbank

@ the alternative: design a continuous-frequency comb filter
@ for each candidate fundamental frequency of interest

0

@ no “compression difficulties” during discretization
o filtering is a linear operation

@ here: each filter is defined over 300-8000 Hz

@ a set of such comb filters (here: 400) yields a filterbank
@ from 50 Hz to 450 Hz, spaced 1 Hz apart

A J. A. Moorer, 1974. “The optimum comb method for pitch period analysis of continuous digitized speech”,
IEEE Trans. Acoustics, Speech, and Signal Proc. 22(5):330-338.
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Discrete Comb Filterbank

@ in software, have a discrete FFT x
@ sampling frequency: 16 kHz
o frame size: 32 ms
@ 257 discrete real, non-negative frequencies (bins)

04— L L L

@ here: assume each comb tooth is triangular
@ Riemmann sample the triangular comb filter

@ note: the resulting discrete comb filters are not harmonic

A J.-S. Liénard, C. Barras & F. Signol, 2008. “Using sets of combs to control pitch estimation errors”, Proc.
155th Meeting ASA, Paris, France.
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Normalizing Harmonic Energy by Non-Harmonic Energy

@ the discrete comb filterbank forms a matrix H
@ its application to FFT x is a matrix multiplication (HTx)
©Q we take the logarithm at the output (as for Mel energies)
© and subtract the log-energy found everywhere else in x

H 1-H
y = log (HTx) — log (l:lTX>

LYY T

@ y is effectively a vector of harmonic-to-noise ratios (HNRs)

A E. Yumoto & W. Gould, 1982. “Harmonics-to-noise ratio as an index of the degree of hoarseness”, J. Acoust.
Soc. Am. 71(6):1544-1550.
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°

Feature Vector Decorrelation

@ the elements of y are correlated

@ transform y by
© subtracting global mean
@ orthogonalizing (rotating) via data-dependent ]—'C_(%RR
© truncating non-positive eigenvalue dimensions

@ yields the harmonic structure cepstral coefficients

HSCC = Fiier (Iog (HTx> — log (I:lTx))
= Fober (Iog (HTX)) ~ Fcorr ('Og (F'TX»

normalization term

@ two options for FEéRR:
@ PCA: conditionally independent of labels
@ LDA: conditioned on labels
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Similarities with the Mel Filterbank, M

MFCC = Fgls_y (Iog (MTX> — (normalization term)

)
HSCC = fEéRR (Iog (HTX)) — (normalization term)

columns

A e T T I
of H
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Experiments
.

Experiments: Data

WSJ: LDC CSR-I (WSJ0) & LDC CSR-1l (WSJ1)

102 female (@) speakers, 95 male (J') speakers
closed-set classification, 10-second trials

o TRAINSET: 5 minutes
e DEVSET: 3 minutes, # trials: 1775 (Q) and 1660 (')
o TESTSET: 3 minutes, # trials: 1510 (Q) and 1412 (&)

(
matched channel, Sennheiser HMD414 (.wv1)
matched multi-session:

o 4-20 sessions per speaker
s TRAIN-/DEV-/TEST- SETs drawn from most sessions

Laskowski & Jin ODYSSEY 2010, Brno, Czech Republic



Experiments
°

Fo/GMM Baseline System (not in paper)

@ extract Fp using get_f0
@ Snack Sound Toolkit: ESPS, default settings
@ note: relies on dynamic programming

Q@ transform voiced frames to log, domain

@ ignore unvoiced frames

N¢g Female Male
DEVSET EVALSET | DEVSET EVALSET
1 12.31 12.71 17.15 17.41
8 17.48 17.94 25.91 27.62
16 16.70 17.44 26.21 27.44
256 17.62 18.36 25.91 26.02

Laskowski & Jin

ODYSSEY 2010, Brno, Czech Republic




Experiments
°

HSCC System Configuration

Parameter/Aspect HSCC System
pre-emphasis no
framing 8ms/32ms
window Hann

Np to optimize
Ng to optimize
UBM no

SAD no
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Experiments
.

HSCC Vector Rotation and Truncation

@ pick number of dimensions Np

o set number of (diagonal-covariance) Gaussians Ng =1
o train PCA, LDA on TRAINSET
@ choose Np to maximize accuracy on DEVSET

100 1 100
80 80
)
© 60 60
—
3
O 40 PCA, 60s 40 PCA, 60s
O =0= PCA, 30s =0= PCA, 30s
< = PCA, 10s = PCA, 10s
20 LDA, 60s 20 LDA, 60s
LDA, 30s LDA, 30s
=g~ LDA, 10s =g~ LDA, 10s
0 0
1 2345 10 20 50 100 400 1 2345 10 20 50 100 400
Np Np
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Results |

@ with Np fixed, find Ng to maximize DEVSET accuracy — 256

Experiments
°

System Female, @ Male, &
Dev TgesT | DEV TEST

get_fO0 1762 18.36 | 26.21 27.44

HSCC/LDA | 99.72 99.87 | 99.70  99.65

© there is speaker-discriminative information in the
transformed-domain, beyond the arg max

o discarding it leads to much worse performance

© improving arg max estimation appears unnecessary
@ arg max estimation = pitch estimation

Laskowski & Jin

ODYSSEY 2010, Brno, Czech Republic




Experiments
°

Contrastive MFCC/GMM System

Parameter/Aspect HSCC System MFCC System
pre-emphasis no yes
framing 8ms/32ms 8ms/32ms
window Hann Hamming
Np 52-53 (opt) 20

Ng 256 (opt) 256 (opt)
UBM no no

SAD no no
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Experiments
°

Results Il

Svstem Female, ¢ Male, &

y Dev Test | DEV TEST
HSCC/LDA 99.72 99.87 | 99.70 99.65
MFCC 98.66 99.27 | 99.34 98.58
MFCC/LDA 08.71 99.27 | 99.34 98.87

| HSCC/LDA @ MFCC | 100.00 100.00 | 99.70 99.87 |

© HSCC performance comparable to MFCC performance
@ in these experiments, always better

@ equal-weight score-level fusion can yield improvement
e HSCC and MFCC appear complementary

Laskowski & Jin ODYSSEY 2010, Brno, Czech Republic



Analysis
°

Some Perturbations

Evaluate several types of perturbation:
© source-domain frequency range ablation

@ low frequency (LF) cutoff
@ high frequency (HF) cutoff

@ transformed-domain frequency resolution

© source-domain spectral envelope ablation

Simplify analysis suite by:
@ using Ng = 1 diagonal-covariance Gaussian per speaker
@ computing accuracy DEVSET only

@ plotting accuracy as a function of Np
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°

Source-Domain Low Frequency (LF) Range

@ modify the low-frequency cutoff for source-domain (FFT) x

*
300 Hz 8 kHz
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Analysis
°

Source-Domain Low Frequency (LF) Range

@ modify the low-frequency cutoff for source-domain (FFT) x
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Analysis
°

Source-Domain High Frequency (HF) Range

@ modify the high-frequency cutoff for source-domain (FFT) x

300 Hz 8 kHz
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Analysis
°

Source-Domain High Frequency (HF) Range

@ modify the high-frequency cutoff for source-domain (FFT) x
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Analysis
°

Source-Domain High Frequency (HF) Range

@ modify the high-frequency cutoff for source-domain (FFT) x

Q d
100 100
95 95
>
O
o
S 9 90
O
(8]
< g “e- 300-8000Hz 95.94 (52) a5 “e— 300-8000Hz 98.67 (53)
-0~ 300-4000Hz 95.10 (39) -0~ 300-4000Hz 96.69 (53)
—~ 300-2000Hz 92.17 (39) —~ 300-2000Hz 93.55 (37)
80 80
0 20 40 60 80 100 0 20 40 60 80 100
Np Np

Laskowski & Jin ODYSSEY 2010, Brno, Czech Republic



Analysis
°

Transformed-Domain Frequency Resolution

@ modify the resolution of the transformed-domain y
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400 filters
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Analysis
°

Transformed-Domain Frequency Resolution

@ modify the resolution of the transformed-domain y
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Analysis
°

Transformed-Domain Frequency Resolution

@ modify the resolution of the transformed-domain y
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Analysis
°

Source-Domain Spectral Envelope Ablation

@ lifter the low-quefrency components of source-domain (FFT) x
@ low-order CCs approximate low-order MFCCs

T

lifter 0 CCs
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Analysis
°

Source-Domain Spectral Envelope Ablation

@ lifter the low-quefrency components of source-domain (FFT) x
@ low-order CCs approximate low-order MFCCs
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Analysis
°

Source-Domain Spectral Envelope Ablation

@ lifter the low-quefrency components of source-domain (FFT) x
@ low-order CCs approximate low-order MFCCs

Q d
100 100
95 95
>
O
o
S 9 90
O
(8]
< g “e CCALL 95.94 (52) a5 “e CCALL 9867 (53)
-o0- CC - 1398.20 (61) -0~ CC-1398.61 (87)
—~ CC - 20 97.46 (76) —~ CC - 20 97.41 (82)
80 80
20 40 60 80 100 0 20 40 60 80 100
Np Np

Laskowski & Jin ODYSSEY 2010, Brno, Czech Republic



Analysis
°

Analysis Findings

@ HSCC representation appears to be robust to perturbation
low-frequency source-domain range (9: 4%, J': 1.5%)
high-frequency source-domain range (9: 4%, &: 5%)
transformed domain resolution (9: 4%, J': 2%)
source-domain envelope ablation (9: 2.5%, J': 1.5%)

¢ © ¢ ¢

@ generally, performance for ¢ speakers more sensitive

@ even under perturbed conditions, vastly outperform the
system based on pitch alone

@ not known how a pitch tracker would perform
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Conclusions
.

Summary of Findings

O Information available to (but discarded by)
(some) pitch trackers is valuable.

© HSCC performance is comparable to MFCC performance.
© HSCC information is complimentary to MFCC information.
© HSCC modeling is as easy as MFCC modeling.
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Conclusions
.

Recommendations/Impact

The presented evidence suggests:
© should not invest time in improving estimation of the
transformed-domain arg max (i.e., pitch)
o simply model the entire transformed-domain

Q if require pitch for other ( “high-level”) features

¢ should not discard transformed-domain following arg max
estimation

© using the entire transformed-domain may lead to a
paradigmatic shift in the modeling of prosody
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Conclusions
°

Of Immediate Interest ...

o
2]
o
o

©

don’t know how the HSCC vector compares to other
“instantaneous” prosody vectors

don't know how the HSCC vector performs under session,
channel, distance, or vocal effort mismatch conditions

other classifiers might be better-suited to the size of the
transformed-domain (SVMs, etc.)
existing prosody systems employ high-level features
o first-, second-, Nth-order differences
¢ modulation spectrum
would prefer data-independent feature rotation/compression

o would significantly improve understanding
¢ would permit UBMing
@ would allow use in large-dataset tasks (e.g., NIST SRE)
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Conclusions
.

Thank You!

This work was particularly inspired by:
© J.-S. Liénard, C. Barras & F. Signol, 2008. “Using sets of combs to
control pitch estimation errors”, Proc. 155th Meeting ASA, Paris, France.

@ M. R. Schroeder, 1968. “Period histogram and product spectrum: New
methods for fundamental-frequency measurement”, JASA 43(4):829-834.

© A. F. Huxley, 1969. “Is resonance possible in the cochlea after all?",
Nature 221:935-940.
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Addenda
°

Fundamental Frequency Variation

@ estimate the FFV spectrum g|p]

o estimate the power spectra F; and Fg
o dilate Fi by a factor 27, p > 0
@ dot product with undilated F,
@ repeat for a continuum of p values time domain

freq domain
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Addenda
°

Fundamental Frequency Variation

@ estimate the FFV spectrum g|p]
o estimate the power spectra F; and Fg
dilate Fr by a factor 2°, p > 0
@ dot product with undilated F,
@ repeat for a continuum of p values time domain

j ‘HHH |_||

freq domain

©

=2 EY o Y w2

@ pass g (p) through a filterbank to yield G € R’
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Addenda
°

Fundamental Frequency Variation

@ estimate the FFV spectrum g|p]
o estimate the power spectra F; and Fg
dilate Fr by a factor 2°, p > 0
@ dot product with undilated F,
@ repeat for a continuum of p values time domain

j ‘HHH |_||

freq domain

©

=2 EY o Y w2

@ pass g (p) through a filterbank to yield G € R’

o decorrelate G
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Addenda
°

Fundamental Frequency Variation (3)

p =270 — 09766

leave left FFT as is
dilate right FFT by p

g(p) = 0.0261
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Fundamental Frequency Variation (3)
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Addenda
°

Some Distant Numbers ?

EVALSET1 EVALSET2
(Sess Mat) (Sess Mis)
Chan  Chan | Chan Chan
Mat  Mis | Mat  Mis
| MFCC [100.0 952 | 773 66.2 |
HSCCoa 100.0 67.0 | 525 319
HSCCrew 100.0 783 | 675 481
err (%rel) 0 342| 316 2438

Table: Classification accuracy (in %) using several different feature types,
including the improved harmonic structure cepstral coefficients HSCC ey,
in matched (“Mat") and mismatched (“Mis") session (“Sess”) and
channel (“Chan") conditions. “err (%rel)" indicates the relative
reduction of error, in percent, from HSCC,;y to HSCC, ey, .
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°

What Do HSCCs Represent?

|
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