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(=) Introduction
I

The Gaussian mixture model - universal
background model (GMM-UBM) is a typical
speaker verification system.

A high-quality UBM is supposed to represent
the speaker-independent feature distribution.

Two methods to guarantee the quality of UBM:
— training on misc data
— gender- or channel-dependent UBMs

 Maybe there are other approaches ...
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&) Vocal tract length (VTL)

* The speaker variability extensively lies in many
aspects, such as speech rate, speech volume,
emotion, vocal effect and so on.

« But the major difference between the speakers
IS due to the difference between their average
VTL.

e S0, In speech recognition, vocal tract length
normalization (VTLN) is often used to obtain
speaker-independent features.

THU MAST —
6/28/2010 4



* A usually used frequency warping function:
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(=) Warping factor a
« The warping factor can be estimated by:
a = argmax p(O~|A")
x

— O~ : warped features
— A" warping model
— 0.88 to 1.12 with step-size 0.02
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®) Experimental setup — Data

« All the experiments were carried out on NIST
SREOQO6 corpora in core test condition
(1conv4w-1conv4w) and in cross-channel
conditions (1conv4w-1lconvmic).

 The UBM training data were selected from
NIST SREO4 1-side (616 utterances) and
SREOQO3, SREO2 corpora (500 utterances).
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=) Experimental setup — Feature

« 12 MFCC + CO

* Cepstral mean subtraction (CMS)
* Feature warping

« Delta, acceleration and triple-delta
« HLDA 52 -> 39
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VTL distribution
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Figure 1: The VIL distribution of the UBM training data.
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Table 1: Dataset partition for UBM training data.

Dataset Warp factor Utterances
I ().88 183
2 (.90 152
3 (.92 138
+ (.94 115
R 0.96, 0.98 123
6 1.00, 1.02 176
7 1.04, 1.06 139
8 1.08, 1.10, 1.12 90

 We divided UBM training data into N=8 disjoint

datasets according to the warping factor.
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Table 2: Performance of baseline gender-independent GMM-

UBM system.
Condition EER(%) min DCFx100
female 1convd4w-1convdw 10.19 4.57
male 1convdw-1conv4w 9.42 4.23
female 1conv4w-1lconvmic 11.84 3.69
male 1conv4dw-1convmic 9.70 4.73

« The EERSs for the four test conditions are about

10%.
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Table 3: Performance of gender-dependent GMM-UBM system.

Condition Measure UBM female UBM male

female 1conv4w-1conv4w EER(%) 9.69 19.88
min DCFx 100 4.49 7.92

male 1convdw-1conv4w EER(%) 20.78 8.38
min DCFx 100 8.20 3.97

female 1conv4w-1convmic EER(%) 11.65 24.06
min DCFx 100 3.63 10.47

male 1conv4w-1convmic EER(%) 23.19 10.01
min DCFx 100 8.89 4.42

« matched gender condition: slightly improved.
« But the cross gender condition: very bad.
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VTL-dependent UBM

Table 4: Performance of each GMM-MBM system.

Condition Measure UBM1 UBM2 UBM3 UBM4 UBMS UBM6 UBM7 UBMS

female 1conv4w-1conv4w EER(%) 10.80 9.81 10.49 12.12 16.86 20.82 22.37 23.77
min DCFx100 5.00 4.37 5.06 5.53 6.66 7.81 8.41 8.80

male Iconvdw-1conv4w EER(%) 23.09 20.95 18.96 16.91 11.34 9.02 10.06 11.98
min DCFx100 8.13 7.77 7.42 7.36 5.76 4.25 4.81 5.67

female 1conv4w-1lconvmic EER(%) 13.01 11.13 11.91 13.53 18.65 25.12 26.07 26.16
min DCFx100 5.77 5.32 5.63 6.33 7.70 8.72 8.77 9.05

male lconv4w-1convmic EER(%) 25.16 23.67 21.90 20.05 12.94 9.91 11.63 13.96
min DCFx100 8.25 1.91 7.65 1.54 6.45 4.72 5.60 6.99

* For female condition, UBM2 gives the best
results.

* For male condition, UBMG6 gives the best result.
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) Comments

« Comparing the UBM2 results for female
conditions and the UBMe6results for male
conditions with the baseline, we can find that a
UBM with far less but well-selected training
data can obtain even better performance than
the UBM with all the training data.
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Figure 2: Speaker enroliment of the GMM-MBM system.
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Figure 3: Testing framework of the GMM-MBM system.
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* For atest utterance, each (speaker GMM,
UBM) pair can produce a log-likelihood-ratio

score:
_1
T

p(O|GMM,,)
p(O[UBM,,)

Sn log

« MBM can obtain a score vector:
[31 Sg - SN}T

 We can use score fusion method to obtain the

final result.
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Table 5: Performance of average fusion method.

Condition EER(%) min DCFx 100
female 1convdw-1convdw 13.92 5.98
male 1convdw-1convdw 12.50 3.48
female 1convdw-1convmic 15.62 6.33
male lconvdw-1lconvmic 14.08 6.37
] o
Savg — f’ﬁ,_r Z_:l Sn

* Not good.
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Table 6: Performance of ML fusion method.

Condition EER(%) min DCF =100
female Tconvdw-1conv4w 9.77 4.28
male lconvdw-1conv4w 8.46 3.88
female Tconv4w-Iconvmic 11.79 3.62
male Iconv4w-1lconvmic 9.43 4.21

n” = arg max p(O|UBM,,),

SML — Sn*

e Just SO so.
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Minimum likelihood ratio (MLR)
method

Table 7: Performance of MLR fusion method.

Condition EER(%) min DCFx100
female Iconvdw-1conv4w 9.40 4.14
male 1conv4w-I1conv4dw 8.36 3.71
female Tconvdw-1convmic 10.76 343
male Iconv4w-1convmic 9.38 4.08

SMLE = ImMin S,

Tt

* |t gives best result among three methods.
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=) Possiblereason

* Why the minimum likelihood ratio method gives
best result?

« \We haven’'t known the exact reason.

* Intuitively, the speaker GMM likelihood and the
UBM likelihood will both increase if a matched
test utterance Is encountered.

 We calculated the means and standard
deviations of likelihood ratios of SRE06 with
each (speaker GMM, UBM) pair.
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Log-likelihhod ratio

The llr distribution for each UBM
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* The less the log likelihood ratio (lIr) is, the

better the performance gets.
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=) Conclusions

* In this paper, we first investigated the VTL-based
criterion for UBM training data selection.

* Experiments showed that the UBM trained with
selected mean-VTL data was better than the UBM
trained with all the data.

« Based on this finding, we further proposed a
multiple background model system, i.e., using
multiple speaker GMM and UBM pairs, for speaker
recognition.

« Through minimum likelihood ratio fusion, the
proposed method can improve the performance
evidently.
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Open guestion

* Why the minimum likelihood ratio method gives
best result? Is it just a coincidence?

« Whether the technigues improve the state-of-
the-art systems?

 How to lower the computational cost?
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Talg Point
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