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Introduction

• The Gaussian mixture model - universal 

background model (GMM-UBM) is a typical 

speaker verification system.

• A high-quality UBM is supposed to represent 

the speaker-independent feature distribution.

• Two methods to guarantee the quality of UBM: 

– training on misc data

– gender- or channel-dependent UBMs

• Maybe there are other approaches …
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Vocal tract length (VTL)

• The speaker variability extensively lies in many 

aspects, such as speech rate, speech volume, 

emotion, vocal effect and so on. 

• But the major difference between the speakers 

is due to the difference between their average 

VTL.

• So, in speech recognition, vocal tract length 

normalization (VTLN) is often used to obtain 

speaker-independent features.



VTLN

• A usually used frequency warping function:

– f original frequency

– f α warped frequency
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Warping factor α

• The warping factor can be estimated by:

– Oα : warped features

– Λ* :  warping model 

– 0.88 to 1.12 with step-size 0.02
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Experimental setup – Data

• All the experiments were carried out on NIST 

SRE06 corpora in core test condition 

(1conv4w-1conv4w) and in cross-channel 

conditions (1conv4w-1convmic).

• The UBM training data were selected from 

NIST SRE04 1-side (616 utterances) and 

SRE03, SRE02 corpora (500 utterances).
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Experimental setup – Feature

• 12 MFCC + C0

• Cepstral mean subtraction (CMS)

• Feature warping

• Delta, acceleration and triple-delta

• HLDA 52 -> 39
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VTL distribution
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Dataset partition

• We divided UBM training data into N=8 disjoint 

datasets according to the warping factor.
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Baseline performance

• The EERs for the four test conditions are about 

10%.
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Gender-dependent UBM

• matched gender condition: slightly improved.

• But the cross gender condition: very bad.
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VTL-dependent UBM

• For female condition, UBM2 gives the best 
results.

• For male condition, UBM6 gives the best result.
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Comments

• Comparing the UBM2 results for female 

conditions and the UBM6results for male 

conditions with the baseline, we can find that a 

UBM with far less but well-selected training 

data can obtain even better performance than 

the UBM with all the training data.
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Multiple background models
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Score fusion

• For a test utterance, each (speaker GMM, 

UBM) pair can produce a log-likelihood-ratio 

score:

• MBM can obtain a score vector:

• We can use score fusion method to obtain the 

final result.
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Average method

• Not good.
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Maximum likelihood (ML) method

• Just so so.
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Minimum likelihood ratio (MLR) 

method

• It gives best result among three methods.
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Possible reason

• Why the minimum likelihood ratio method gives 

best result?

• We haven’t known the exact reason.

• Intuitively, the speaker GMM likelihood and the 

UBM likelihood will both increase if a matched 

test utterance is encountered.

• We calculated the means and standard 

deviations of likelihood ratios of SRE06 with 

each (speaker GMM, UBM) pair.
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The llr distribution for each UBM

• The less the log likelihood ratio (llr) is, the 

better the performance gets. 
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Conclusions

• In this paper, we first investigated the VTL-based 
criterion  for UBM training data selection.

• Experiments showed that the UBM trained with 
selected mean-VTL data was better than the UBM 
trained with all the data.

• Based on this finding, we further proposed a 
multiple background model system, i.e., using 
multiple speaker GMM and UBM pairs, for speaker 
recognition.

• Through minimum likelihood ratio fusion, the 
proposed method can improve the performance 
evidently.
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Open question

• Why the minimum likelihood ratio method gives 

best result? Is it just a coincidence?

• Whether the techniques improve the state-of-

the-art systems?

• How to lower the computational cost?
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