InterSpeech 2021

Generalized Dilated CNN Models for Depression Detection Using Inverted Vocal Tract Variables
(3 minutes introduction)

Nadee Seneviratne (University of Maryland at College Park, USA), Carol Espy-Wilson (University of Maryland at College Park, USA)
Depression detection using vocal biomarkers is a highly researched area. Articulatory coordination features (ACFs) are developed based on the changes in neuromotor coordination due to psychomotor slowing, a key feature of Major Depressive Disorder. However findings of existing studies are mostly validated on a single database which limits the generalizability of results. Variability across different depression databases adversely affects the results in cross corpus evaluations (CCEs). We propose to develop a generalized classifier for depression detection using a dilated Convolutional Neural Network which is trained on ACFs extracted from two depression databases. We show that ACFs derived from Vocal Tract Variables (TVs) show promise as a robust set of features for depression detection. Our model achieves relative accuracy improvements of ~10% compared to CCEs performed on models trained on a single database. We extend the study to show that fusing TVs and Mel-Frequency Cepstral Coefficients can further improve the performance of this classifier.