InterSpeech 2021

Dual-Path Filter Network: Speaker-Aware Modeling for Speech Separation
(3 minutes introduction)

Fan-Lin Wang (Academia Sinica, Taiwan), Yu-Huai Peng (Academia Sinica, Taiwan), Hung-Shin Lee (Academia Sinica, Taiwan), Hsin-Min Wang (Academia Sinica, Taiwan)
Speech separation has been extensively studied to deal with the cocktail party problem in recent years. All related approaches can be divided into two categories: time-frequency domain methods and time domain methods. In addition, some methods try to generate speaker vectors to support source separation. In this study, we propose a new model called dual-path filter network (DPFN). Our model focuses on the post-processing of speech separation to improve speech separation performance. DPFN is composed of two parts: the speaker module and the separation module. First, the speaker module infers the identities of the speakers. Then, the separation module uses the speakers’ information to extract the voices of individual speakers from the mixture. DPFN constructed based on DPRNN-TasNet is not only superior to DPRNN-TasNet, but also avoids the problem of permutation-invariant training (PIT).