SuperLectures.com

EFFICIENT IMAGE RECONSTRUCTION UNDER SPARSITY CONSTRAINTS WITH APPLICATION TO MRI AND BIOLUMINESCENCE TOMOGRAPHY

Medical Imaging

Full Paper at IEEE Xplore

Presented by: Michael Unser, Author(s): Matthieu Guerquin-Kern, Jean-Charles Baritaux, Michael Unser, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Most bioimaging modalities rely on indirect measurements of the quantity under investigation. The image is obtained as the result of an optimization problem involving a physical model of the measurement system. Due to the ill-posedness of the above problem, the impact of the noise on the reconstructed images must be controlled. The recent emphasis in biomedical image reconstruction is on regularization schemes that favor sparse solutions, which renders the optimization problem non-smooth. In this work, we show how step-size adaptation can be used to speed up the most recent multi-step algorithms (e.g. FISTA) employed in sparse image recovery. We present experiments in MRI and Fluorescence Molecular Tomography with specifically tailored step-adaptation strategies. Our results demonstrate the possibility of an order-of-magnitude speed enhancement over state-of-the-art algorithms.


  Speech Transcript

|

  Slides

Enlarge the slide | Show all slides in a pop-up window

0:00:16

  1. slide

0:00:46

  2. slide

0:03:46

  3. slide

0:07:01

  4. slide

0:10:05

  5. slide

0:11:58

  6. slide

0:12:49

  7. slide

0:14:21

  8. slide

0:15:05

  9. slide

0:15:12

 10. slide

0:16:06

 11. slide

0:16:50

 12. slide

0:17:40

 13. slide

0:18:14

 14. slide

0:19:21

 15. slide

  Comments

Please sign in to post your comment!

  Lecture Information

Recorded: 2011-05-24 14:05 - 14:25, Club D
Added: 15. 6. 2011 18:06
Number of views: 29
Video resolution: 1024x576 px, 512x288 px
Video length: 0:21:06
Audio track: MP3 [7.14 MB], 0:21:06