SuperLectures.com

AN SVM BASED CLASSIFICATION APPROACH TO SPEECH SEPARATION

Full Paper at IEEE Xplore

Speech Enhancement

Přednášející: Kun Han, Autoři: Kun Han, DeLiang Wang, The Ohio State University, United States

Monaural speech separation is a very challenging task. CASA-based systems utilize acoustic features to produce a time-frequency (T-F) mask. In this study, we propose a classification approach to monaural separation problem. Our feature set consists of pitch-based features and amplitude modulation spectrum features, which can discriminate both voiced and unvoiced speech from nonspeech interference. We employ support vector machines (SVMs) followed by a re-thresholding method to classify each T-F unit as either target-dominated or interference-dominated. An auditory segmentation stage is then utilized to improve SVM-generated results. Systematic evaluations show that our approach produces high quality binary masks and outperforms a previous system in terms of classification accuracy.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:16

  1. slajd

0:00:36

  2. slajd

0:00:59

  3. slajd

0:01:37

  4. slajd

0:02:52

  5. slajd

0:03:52

  6. slajd

0:04:43

  7. slajd

0:05:45

  8. slajd

0:06:13

  9. slajd

0:07:14

 10. slajd

0:08:18

 11. slajd

0:09:43

 12. slajd

0:10:07

 13. slajd

0:11:21

 14. slajd

0:12:26

 15. slajd

0:13:39

 16. slajd

0:14:55

 17. slajd

0:15:40

 18. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-27 16:15 - 16:35, Panorama
Přidáno: 7. 6. 2011 19:19
Počet zhlédnutí: 48
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:20:25
Audio stopa: MP3 [6.98 MB], 0:20:25