SuperLectures.com

SPARSITY-BASED SINOGRAM DENOISING FOR LOW-DOSE COMPUTED TOMOGRAPHY

Medical Imaging

Full Paper at IEEE Xplore

Přednášející: Joseph Shtok, Autoři: Joseph Shtok, Michael Elad, Michael Zibulevsky, Technion / Israel Institute of Technology, Israel

We propose a sinogram restoration method which consists of a patch-wise non-linear processing, based on a sparsity prior in terms of a learned dictionary. An off-line learning process uses the statistical model of the sinogram noise and minimizes an error measure in the image domain over the training set. The error measure is designed to improve the reconstruction of low-contrast image edges. Our numerical study shows that the algorithm improves on the performance of the standard Filtered Back-Projection algorithm and effectively allows to halve the radiation dose for the same image quality.


  Přepis řeči

|

  Slajdy

Zvětšit slajd | Zobrazit všechny slajdy

0:00:16

  1. slajd

0:01:53

  2. slajd

0:05:23

  3. slajd

0:05:52

  4. slajd

0:07:12

  5. slajd

0:09:48

  6. slajd

0:11:51

     5. slajd

0:12:27

     6. slajd

0:12:50

  7. slajd

0:17:23

  8. slajd

0:18:06

  9. slajd

0:19:24

 10. slajd

0:21:20

 11. slajd

0:22:21

 12. slajd

0:22:45

 13. slajd

  Komentáře

Please sign in to post your comment!

  Informace o přednášce

Nahráno: 2011-05-26 17:55 - 18:15, Club H
Přidáno: 9. 6. 2011 23:29
Počet zhlédnutí: 74
Rozlišení videa: 1024x576 px, 512x288 px
Délka videa: 0:25:10
Audio stopa: MP3 [8.61 MB], 0:25:10