

particle flow for nonlinear filters

Fred Daum & Jim Huang 26 May 2011

Copyright © 2011 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company.

nonlinear filtering problem

 $z(t_k) =$ m-dimensional measurement vector $t_k =$ time of kth measurement $v_k =$ measurement noise vector

 $p(x, t | Z_k)$ = probability density of x at time t given Z_k

 Z_k = set of all measurements up to & including time t_k

exact flow: performance vs. number of particles

25 Monte Carlo Trials

radar tracking ballistic missile (d =6 & N = 100 particles)

exact flow filter is many orders of magnitude faster per particle than standard particle filters

* Intel Corel 2 CPU, 1.86GHz, 0.98GB of RAM, PC-MATLAB version 7.7

particle flow filter is many orders of magnitude faster real time computation (for the same or better estimation accuracy)

nonlinear filter

particle degeneracy

induced flow of particles for Bayes' rule

linear first order highly underdetermined PDE:

$$div(q(x,\lambda)) = Tr\left[\frac{\partial q(x,\lambda)}{\partial x}\right] = \eta(x,\lambda)$$

$$\eta(x,\lambda) = -p(x,\lambda)\log h(x)$$

$$\eta = \frac{\partial q_1}{\partial x_1} + \frac{\partial q_2}{\partial x_2} + \dots + \frac{\partial q_d}{\partial x_d}$$

like Gauss' divergence
law in electromagnetics

function values are only known at random points in ddimensional space q = pf f = unknown function p & η = known at random points

12

We want $dx/d\lambda = f(x,\lambda)$ to be a stable dynamical system.

method to solve PDE	how to pick unique solution	computation
1. generalized inverse of linear differential operator	minimum norm*	fast Poisson solver in d-dimensions or Coulomb's law or other
2. Poisson's equation	gradient of potential* (assume irrotational flow)	fast Poisson solver in d-dimensions or Coulomb's law or other
3. generalized inverse of gradient of log- homotopy	assume incompressible flow (i.e., divergence free flow)	fast (but need to compute the gradient from random points)
4. most general solution	most robustly stable filter or random pick, etc.	fast (but need to compute the gradient from random points)
5. separation of variables (Gaussian)	pick solution of specific form (polynomial)	extremely fast (formula)
6. separation of variables (exponential family)	pick solution of specific form (finite basis functions)	very fast (formula)
7. variational formulation (Gauss & Hertz)	convex function minimization	ODEs
8. optimal control formulation	convex functional minimization	Euler-Lagrange PDEs (or maybe ODES for nice problem)
9. direct integration (of first order linear PDE in divergence form)	choice of d-1 arbitrary functions	one-dimensional integral
10. generalized method of characteristics	more conditions (e.g., curl = given & chain rule)	ODEs from chain rule
11. another homotopy (inspired by Gromov's h-principle)	initial condition of ODE & uniqueness of sol. to ODE	ODEs from homotopy
12. finite dimensional parametric flow (e.g., f = Ax+b)	non-singular matrix to invert	d^3 or d^6 (least squares for d or d ² parameters, i.e., A & b)
13. Fourier transform of PDE (divergence form of PDE has constant coefficients)	minimum norm* or most stable flow	Gaussian sum makes inverse very fast (by inspection)

exact particle flow for Gaussian densities:

$$\frac{dx}{d\lambda} = f(x,\lambda)$$
$$\log(h) = -div(f) - \frac{\partial \log p}{\partial x} f$$

for g & h Gaussian, we can solve for f exactly:

$$f = Ax + b$$
$$A = -\frac{1}{2}PH^{T} [\lambda HPH^{T} + R]^{-1}H$$
$$b = (I + 2\lambda A) [(I + \lambda A)PH^{T}R^{-1}z + A\overline{x}]$$

automatically stable under very mild conditions & extremely fast

effect of divergence of f:

incompressible particle flow

$$\frac{\mathrm{dx}}{\mathrm{d\lambda}} = \frac{-\log(h)\left(\frac{\partial \log p}{\partial x}\right)^{T}}{\left\|\frac{\partial \log p}{\partial x}\right\|^{2}}$$

 $\frac{dx}{d\lambda} = 0 \quad \text{for zero gradient}$

solving Poisson's equation:

$$\frac{dx}{d\lambda} = f(x,\lambda) = \left[\frac{\partial V(x,\lambda)}{\partial x}\right]^T / p(x,\lambda)$$
Poisson's equation
$$Tr\left[\frac{\partial^2 V(x,\lambda)}{\partial x^2}\right] = -\log h(x)p(x,\lambda)$$

$$V(x,\lambda) = \int \log h(y)p(y,\lambda)\frac{c}{\|x-y\|^{d-2}}dy$$

in which

$$c = \Gamma(\frac{d}{2} - 1) / 4\pi^{d/2}$$

integration by parts yields:

$$\frac{\partial V(x,\lambda)}{\partial x} = -\int \frac{\partial \log h(y) p(y,\lambda)}{\partial y} \frac{c}{\|x-y\|^{d-2}} dy$$

or without integration by parts:

$$\frac{\partial V(x,\lambda)}{\partial x} = \int \log h(y) p(y,\lambda) \frac{c(2-d)(x-y)^T}{\|x-y\|^d} dy$$

d-dimensional Coulomb's law:

for
$$d \ge 3$$

$$\frac{\partial V(x,\lambda)}{\partial x} = \int \log h(y) p(y,\lambda) \frac{c(2-d)(x-y)^T}{\|x-y\|^d} dy$$
like
Coulomb's

$$\frac{\partial V(x,\lambda)}{\partial x} = E\left[\log h(y) c(2-d)(x-y)^T / \|x-y\|^d\right]$$

$$\frac{\partial V(x_i,\lambda)}{\partial x} \approx \sum_{j \in S_i} \log h(x_j) p(x_j,\lambda) \frac{c(2-d)(x_i-x_j)^T}{\|x_i-x_j\|^d}$$

in which S_i is the set of k - nearest neighbors to the ith particle $x_i = i^{th}$ particle where E(.) denotes the expected value wrt the probability density p(y). (1) Flavia Lanzara , Vladimir Maz'ya & Gunther Schmidt "On the fast computation of high dimensional volume potentials" arXiv:0911.0443v1 [math.NA] 2 Nov 2009

note: linear computational complexity in d for uniform grid, and it can be extended to scattered data!

(2) huge literature on fast Poisson solvers (e.g., FMM Rokhlin, Beylkin, Coifman, Hackbush, et al.)

direct integration of PDE

use the divergence form of the PDE :

$$div(q(x,\lambda)) = \eta(x,\lambda)$$

$$\eta = \frac{\partial q_1}{\partial x_1} + \frac{\partial q_2}{\partial x_2} + \dots + \frac{\partial q_d}{\partial x_d}$$

$$\tilde{q} = \text{exact solution to related problem div}(\tilde{q}) = \tilde{\eta}$$

$$div(q - \tilde{q}) = \eta - \tilde{\eta}$$

pick all but one component of $q = \tilde{q}$

$$q_j = \tilde{q}_j + \int_{j}^{x_j} \eta(x,\lambda) - \tilde{\eta}(x,\lambda) dx_j$$

$$q_j \approx \tilde{q}_j + x_j [\eta(x,\lambda) - \tilde{\eta}(x,\lambda)] + H.O.T.$$

most general solution for exact flow:

$$\frac{dx}{d\lambda} = f(x,\lambda)$$
fundamental
PDE for exact
particle flow

$$log(h) = -div(f) - \frac{\partial \log p}{\partial x} f$$
the most general solution is :

$$f = -C^{\#} \log h + (I - C^{\#}C)y$$
in which C is a linear differenti al operator :

$$C = \frac{\partial \log p}{\partial x} + div$$
could pick y to
robustly stabilize the
filter or random or
other

finite dimensional parametric approximation:

$$J = \left\| \log(h) + \frac{\partial \log p}{\partial x} f + div(f) \right\|^{2} + r$$

let $f(x, \lambda) \approx A(\lambda)x + b(\lambda)$
$$J = \left\| \log(h) + \frac{\partial \log p}{\partial x} (Ax + b) + Tr(A) \right\|^{2} + r$$

(1) solve for A & b to minimize J at each particle x
(2) could let A = -BB^T to force stability of flow
(3) could also add penalty to make flow robustly stable

(4) note that $\operatorname{div}(f) = \operatorname{Tr}(A) = \sum \lambda_j(A)$

(5) however, computational complexity is d⁶, but for sparse A this can be reduced to only d³

hybrid method:

We want to find a flow $f(x, \lambda)$ that satisfies the following PDE :

$$\frac{\partial \log p(\mathbf{x}, \lambda)}{\partial \mathbf{x}} f + div(f) = -\log h(x)$$

Without loss of generality, let $f(x, \lambda) = A(\lambda)x + b(\lambda) + c(x, \lambda)$

in which A & b are computed from our exact solution with g & h Gaussian using an EKF (as usual for our exact flow):

$$\frac{\partial \text{logp}}{\partial x}(Ax+b+c) + Tr(A) + div(c) = -\log(h)$$

Assume that $div(c) \approx 0$, and compute the minimum norm $c(x, \lambda)$:

$$c \approx -\left(\frac{\partial \log p}{\partial x}\right)^{\#} \left[\frac{\partial \log p}{\partial x}(Ax+b) + Tr(A) + \log(h)\right]$$

in which $(.)^{\#}$ denotes the pseudo-inverse of (.):

$$\left(\frac{\partial \log p}{\partial x}\right)^{\#} = \left(\frac{\partial \log p}{\partial x}\right)^{T} / \left\|\frac{\partial \log p}{\partial x}\right\|^{2}$$

particle flow filter

- orders of magnitude faster than standard particle filters
- orders of magnitude more accurate than the extended Kalman filter for difficult nonlinear problems
- solves particle degeneracy problem using particle flow induced by log-homotopy for Bayes' rule
- no resampling of particles
- no proposal density
- no importance sampling & no MCMC methods
- unnormalized log probability density
- embarrassingly parallelizable w/o resampling bottleneck (unlike other particle filters)
- exploits smoothness & regularity of densities

particle flow filter is many orders of magnitude faster real time computation (for the same or better estimation accuracy)

BACKUP

exact particle flow & Poisson's equation:

$$\frac{dx}{d\lambda} = f(x,\lambda)$$

$$q(x,\lambda) = p(x,\lambda)f(x,\lambda)$$

$$\log h(x)p(x,\lambda) = -Tr\left[\frac{\partial q(x,\lambda)}{\partial x}\right] = -div(q)$$
Obviously there is no unique solution,
so pick the unique minimum norm solution :

$$q(x,\lambda) = \frac{\partial V(x,\lambda)}{\partial x}$$

$$Tr\left[\frac{\partial^2 V(x,\lambda)}{\partial x^2}\right] = -\log h(x) p(x,\lambda)$$
Poisson's
$$\frac{dx}{d\lambda} = f(x,\lambda) = \frac{\partial V(x,\lambda)}{\partial x} / p(x,\lambda)$$
equation

incompressible particle flow

$$\frac{\mathrm{dx}}{\mathrm{d\lambda}} = \frac{-\log(h)\left(\frac{\partial \log p}{\partial x}\right)^{T}}{\left\|\frac{\partial \log p}{\partial x}\right\|^{2}}$$

 $\frac{dx}{d\lambda} = 0 \quad \text{for zero gradient}$

method to solve PDE	how to pick unique solution	computation
1. generalized inverse of linear differential operator	minimum norm*	fast Poisson solver in d-dimensions or Coulomb's law or other
2. Poisson's equation	gradient of potential* (assume irrotational flow)	fast Poisson solver in d-dimensions or Coulomb's law or other
3. generalized inverse of gradient of log- homotopy	assume incompressible flow (i.e., divergence free flow)	fast (but need to compute the gradient from random points)
4. most general solution	most robustly stable filter or random pick, etc.	fast (but need to compute the gradient from random points)
5. separation of variables (Gaussian)	pick solution of specific form (polynomial)	extremely fast (formula)
6. separation of variables (exponential family)	pick solution of specific form (finite basis functions)	very fast (formula)
7. variational formulation (Gauss & Hertz)	convex function minimization	ODEs
8. optimal control formulation	convex functional minimization	Euler-Lagrange PDEs (or maybe ODES for nice problem)
9. direct integration (of first order linear PDE in divergence form)	choice of d-1 arbitrary functions	one-dimensional integral
10. generalized method of characteristics	more conditions (e.g., curl = given & chain rule)	ODEs from chain rule
11. another homotopy (inspired by Gromov's h-principle)	initial condition of ODE & uniqueness of sol. to ODE	ODEs from homotopy
12. finite dimensional parametric flow (e.g., f = Ax+b)	non-singular matrix to invert	d^3 or d^6 (least squares for d or d ² parameters, i.e., A & b)
13. Fourier transform of PDE (divergence form of PDE has constant coefficients)	minimum norm* or most stable flow	Gaussian sum makes inverse very fast (by inspection)

exact particle flow for Gaussian densities:

$$\frac{dx}{d\lambda} = f(x,\lambda)$$
$$\log(h) = -div(f) - \frac{\partial \log p}{\partial x} f$$

for g & h Gaussian, we can solve for f exactly:

$$f = Ax + b$$
$$A = -\frac{1}{2}PH^{T} [\lambda HPH^{T} + R]^{-1}H$$
$$b = (I + 2\lambda A)[(I + \lambda A)PH^{T}R^{-1}z + A\overline{x}]$$

automatically stable under very mild conditions & extremely fast

incompressible particle flow

$$\frac{\mathrm{dx}}{\mathrm{d\lambda}} = \frac{-\log(h)\left(\frac{\partial \log p}{\partial x}\right)^{T}}{\left\|\frac{\partial \log p}{\partial x}\right\|^{2}}$$

 $\frac{dx}{d\lambda} = 0 \quad \text{for zero gradient}$

nonlinear filter performance (accuracy wrt optimal & computational complexity)

variation in initial uncertainty of x

25 Monte Carlo Trials

variation in eigenvalues of the plant (λ)

25 Monte Carlo Trials

variation in dimension of **x**

25 Monte Carlo Trials
variation in SNR

25 Monte Carlo Trials

variation in process noise

25 Monte Carlo Trials

particle flow filter

- orders of magnitude faster than standard particle filters
- orders of magnitude more accurate than the extended Kalman filter for difficult nonlinear problems
- solves particle degeneracy problem using particle flow induced by log-homotopy for Bayes' rule
- no resampling of particles
- no proposal density
- no importance sampling & no MCMC methods
- unnormalized log probability density
- embarrassingly parallelizable w/o resampling bottleneck (unlike other particle filters)
- exploits smoothness & regularity of densities

particle flow filter is many orders of magnitude faster real time computation (for the same or better estimation accuracy)

History of Mathematics

- 1. Creation of the integers
- 2. Invention of counting
- 3. Invention of addition as a fast method of counting
- 4. Invention of multiplication as a fast method of addition
- 5. Invention of particle flow as a fast method of multiplication*

fundamental PDE for exact particle flow:

$$\frac{dx}{d\lambda} = f(x,\lambda)$$
Fokker-Planck
equation with Q = 0
$$\frac{\partial p(x,\lambda)}{\partial \lambda} = -Tr\left[\frac{\partial(pf)}{\partial x}\right]$$
assume
log $p(x,\lambda)$ $p(x,\lambda) = -Tr\left[\frac{\partial(pf)}{\partial x}\right]$
assume
log-homotopy
$$\log p(x,\lambda) = \log g(x) + \lambda \log h(x)$$

$$\log h(x) p(x,\lambda) = -p(x,\lambda)Tr\left[\frac{\partial f}{\partial x}\right] - \frac{\partial p}{\partial x} f$$
first order linear
underdetermined
PDE in $f(x,\lambda)$
₇₈

direct integration of fundamental PDE:

use the divergence form of the PDE :

$$div(q(x,\lambda)) = Tr\left[\frac{\partial q(x,\lambda)}{\partial x}\right] = \eta(x,\lambda)$$

$$\eta = \frac{\partial q_1}{\partial x_1} + \frac{\partial q_2}{\partial x_2} + \dots + \frac{\partial q_d}{\partial x_d}$$

$$\frac{\partial q_j}{\partial x_j} = \eta - \sum_{k \neq j}^d \frac{\partial q_k}{\partial x_k}$$
pick for best stability of particle flow
$$q_j(x) = \int_{k \neq j}^x [\eta(x) - \theta_j(x)] dx_j$$

$$\theta_j(x) = \sum_{k \neq j}^d \frac{\partial q_k}{\partial x_k} = \text{arbitrary function (except for compatibility conditions)}$$

Assuming regularity conditions on η and Ω , a solution for $q(x, \lambda)$ exists

$$\inf_{\Omega} \int_{\Omega} \eta(\mathbf{x}) d\mathbf{x} = 0.$$

more details of direct integration:

$$div(q) = \eta(x)$$
$$q_k = \int_{0}^{x_k} \left[\eta(x) - \rho(x_k) \int_{\Omega_k} \eta(x) dx_k \right] dx_k \text{ for } k \ge 2$$

in which

$$\rho(\mathbf{x}_{k}) =$$
 arbitrary function such that
 $\int_{\Omega_{k}} \rho(\mathbf{x}_{k}) dx_{k} = 1$

assuming smooth functions with compact support, and Ω is bounded, open, connected smooth set, a necessary & sufficient condition for the existence of a solution q(x) is that $\int_{\Omega} \eta(x) dx = 0$

Oh's Formula for Monte Carlo errors

$$\sigma^2 \approx \left\{ \left[\frac{1+k}{\sqrt{1+2k}} \right] \exp\left[\frac{\varepsilon^2}{1+2k} \right] \right\}^d / N$$

Assumptions:

- (1) Gaussian density (zero mean & unit covariance matrix)
- (2) d-dimensional random variable
- (3) Proposal density is also Gaussian with mean ε and covariance matrix kI, but it is not exact for $k \neq 1$ or $\varepsilon \neq 0$
- (4) N = number of Monte Carlo trials

1. derive PDE 2. solve PDE 3. test solution

difficulties for exact finite dimensional filters vs. particle filters

	Bayes' update of conditional density of x	prediction of conditional density of x with time
1. exact filters (e.g., Daum 1986)	easy	hard
2. particle filters	hard	easy
3. hybrid of exact& particle filters	?	?

type of nonlinear filter	statistics computed	computational complexity	estimation accuracy	representation of probability density
extended Kalman filters	mean vector & covariance matrix	d ³	sometimes good but often highly suboptimal	mean vector & covariance matrix
unscented Kalman filters	mean vector & covariance matrix	d ³	sometimes better than EKF but sometimes worse	mean vector & covariance matrix
batch least squares	mean vector & covariance matrix	d ³	sometimes better than EKF but sometimes worse	mean vector & covariance matrix
numerical solution of Fokker-Planck PDE	full conditional probability density of state	curse of dimensionality	optimal*	points in state space and/or smooth functions
particle filters	full conditional probability density of state	curse of dimensionality	optimal*	particles
exact recursive filters (Kalman, Beneš, Daum, Wonham, Yau)	full conditional probability density of state	polynomial in d (for special problems)	optimal (for special problems)	sufficient statistics 84

What is a particle filter?

Why engineers like particle filters:

- Very easy to code
- Extremely general dynamics & measurements: nonlinear & non-Gaussian
- Optimal estimation accuracy (if you use enough particles....)
- You don't need to know anything about stochastic differential equations or any fancy numerical methods for solving PDEs
- Some people (erroneously) think that PFs beat the curse of dimensionality

chicken & egg problem

