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nonlinear filtering problem

x = d-dimensional state vector

t = time 

w(t) = process noise vector

dx = F(x, t)dt + G(x, t) dw
continuous

time

dynamicsdiscrete

time 

measurements

z(tk) = m-dimensional measurement vector

tk = time of kth measurement

vk = measurement noise vector

p(x, t | Zk) = probability density of x at time t given Zk

Zk = set of all measurements up to & including time tk

z(tk) = H(x(tk), tk, vk)

measurements
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curse of dimensionality for 

classic particle filter

optimal

accuracy:

r = 1.0
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Exact Flow

Exact Flow with Redraw

only need N = 100 

particles for optimal 

accuracy for d = 30 
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accuracy for d = 30 

dimensional problem



exact flow: performance vs. number of particles
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Dimension = 5
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extremely 
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plant

25 Monte Carlo Trials
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EKF

Inexact Flow

Exact Flow

Exact Flow with Redraw

radar tracking ballistic missile 

(d =6 & N = 100 particles)

incompressible 

flow
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exact flow filter is many orders of magnitude faster per 

particle than standard particle filters

- - - - -

bootstrap

EKF proposal

incomp flow

exact flow
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d = 30

d = 20

d = 10

d = 5 bootstrap 

particle filter

EKF proposal

* Intel Corel 2 CPU, 1.86GHz, 0.98GB of RAM, PC-MATLAB version 7.7

25 Monte Carlo trials
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particle flow filter is many orders of magnitude faster 

real time computation (for the same or better 

estimation accuracy)

3 or 4 orders of 

3 or 4 orders of 
magnitude faster 

per particle

avoids 
bottleneck in 

many 
orders of 

magnitude 
faster 

3 or 4 orders of 
magnitude 

fewer particles

bottleneck in 
parallel 

processing due 
to resampling
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prediction of  

conditional

probability 

density from 

tk-1 to tk

nonlinear filter

measurements

:rule Bayes'     

solution of 

Fokker-Planck

equation

),(),(),(

:rule Bayes'     

1 kkkkkk txzpZtxpZtxp −=
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particle degeneracy

likelihood of 

measurement
prior

density

particles to represent the prior
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induced flow of particles 

for Bayes’ rule

pdf pdf
flow of density

prior posterior

)(log)(log),(log xhxgxp λλ +=

particles particles

flow of particles

sample from

density

sample from

density

λ=0 λ=1

)(log)(log),(log xhxgxp λλ +=

),( λ
λ

xf
d

dx
=
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linear first order highly underdetermined PDE:
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like Gauss’ divergence 

law in electromagnetics

function values are 

only known at 

random points in d-

dimensional space
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q = pf

f = unknown function

p & η = known at random points

We want dx/dλ = f(x,λ)

to be a stable dynamical

system.



method to solve PDE how to pick unique solution computation

1. generalized inverse of linear differential 

operator

minimum norm* fast Poisson solver in d-dimensions or 

Coulomb’s law or other

2. Poisson’s equation gradient of potential*

(assume irrotational flow)

fast Poisson solver in d-dimensions or 

Coulomb’s law or other

3. generalized inverse of gradient of log-

homotopy

assume incompressible flow (i.e.,

divergence free flow)

fast (but need to compute the 

gradient from random points)

4. most general solution most robustly stable filter or random 

pick, etc.

fast (but need to compute the 

gradient  from random points)

5. separation of variables (Gaussian) pick solution of specific form 

(polynomial)

extremely  fast (formula)

6. separation of variables

(exponential family)

pick solution of specific form (finite 

basis functions)

very fast (formula)

7. variational formulation (Gauss & Hertz) convex function minimization ODEs

8. optimal control formulation convex functional minimization Euler-Lagrange PDEs (or maybe 

ODES for nice problem)

9. direct integration (of first order linear PDE 

in divergence form)

choice of d-1 arbitrary functions one-dimensional integral

10. generalized method of characteristics more conditions (e.g., curl = given & 

chain rule)

ODEs from chain rule

11.  another homotopy (inspired by Gromov’s 

h-principle)

initial condition of ODE &

uniqueness of  sol. to ODE

ODEs from homotopy

12. finite dimensional parametric flow 

(e.g., f = Ax+b)

non-singular matrix to invert d^3 or d^6  (least squares for d or d² 
parameters, i.e., A & b)

13. Fourier transform of PDE (divergence form 

of PDE has constant coefficients)

minimum norm* or most stable flow Gaussian sum makes inverse very 

fast (by inspection)
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exact particle flow for Gaussian densities:

f
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automatically stable 

under very mild 

conditions & 

extremely fast



effect of divergence of f:
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is to change 

the speed of 

particle flow

if div(f) = 0 

we get 

incompressible 

flow
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incompressible particle flow
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solving Poisson’s equation:
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d-dimensional Coulomb’s law:
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(1) Flavia Lanzara , Vladimir Maz’ya & Gunther Schmidt

“On the fast computation of high dimensional volume 

potentials” arXiv:0911.0443v1 [math.NA] 2 Nov 2009

note: linear computational complexity in d for uniform grid, 

and it can be extended to scattered data!

19

and it can be extended to scattered data!

(2) huge literature on fast Poisson solvers (e.g., FMM

Rokhlin, Beylkin, Coifman, Hackbush, et al.)
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direct integration of PDE
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most general solution for exact flow:
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finite dimensional parametric approximation:
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particle flow filter

• orders of magnitude faster than standard particle filters

• orders of magnitude more accurate than the extended 

Kalman filter for difficult nonlinear problems

• solves particle degeneracy problem using particle flow 

induced by log-homotopy for Bayes’ rule

• no resampling of particles• no resampling of particles

• no proposal density

• no importance sampling & no MCMC methods

• unnormalized log probability density

• embarrassingly parallelizable w/o resampling bottleneck 

(unlike other particle filters)

• exploits smoothness & regularity of densities
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particle flow filter is many orders of magnitude faster 

real time computation (for the same or better 

estimation accuracy)

3 or 4 orders of 

3 or 4 orders of 
magnitude faster 

per particle

avoids 
bottleneck in 

many 
orders of 

magnitude 
faster 

3 or 4 orders of 
magnitude 

fewer particles

bottleneck in 
parallel 

processing due 
to resampling
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exact particle flow & Poisson’s equation:

 solution, unique no is  thereobviously 
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incompressible particle flow
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method to solve PDE how to pick unique solution computation

1. generalized inverse of linear differential 

operator

minimum norm* fast Poisson solver in d-dimensions or 

Coulomb’s law or other

2. Poisson’s equation gradient of potential*

(assume irrotational flow)

fast Poisson solver in d-dimensions or 

Coulomb’s law or other

3. generalized inverse of gradient of log-

homotopy

assume incompressible flow (i.e.,

divergence free flow)

fast (but need to compute the 

gradient from random points)

4. most general solution most robustly stable filter or random 

pick, etc.

fast (but need to compute the 

gradient  from random points)

5. separation of variables (Gaussian) pick solution of specific form 

(polynomial)

extremely  fast (formula)

6. separation of variables

(exponential family)

pick solution of specific form (finite 

basis functions)

very fast (formula)

7. variational formulation (Gauss & Hertz) convex function minimization ODEs

8. optimal control formulation convex functional minimization Euler-Lagrange PDEs (or maybe 

ODES for nice problem)

9. direct integration (of first order linear PDE 

in divergence form)

choice of d-1 arbitrary functions one-dimensional integral

10. generalized method of characteristics more conditions (e.g., curl = given & 

chain rule)

ODEs from chain rule

11.  another homotopy (inspired by Gromov’s 

h-principle)

initial condition of ODE &

uniqueness of  sol. to ODE

ODEs from homotopy

12. finite dimensional parametric flow 

(e.g., f = Ax+b)

non-singular matrix to invert d^3 or d^6  (least squares for d or d² 
parameters, i.e., A & b)

13. Fourier transform of PDE (divergence form 

of PDE has constant coefficients)

minimum norm* or most stable flow Gaussian sum makes inverse very 

fast (by inspection)
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exact particle flow for Gaussian densities:
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automatically stable 

under very mild 

conditions & 

extremely fast
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incompressible particle flow
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nonlinear filter performance (accuracy wrt 

optimal & computational complexity)

DIMENSION
process noise

initial uncertainty

of state vector

measurement
exploit

smoothness

sparseness

measurement

noise

stability 

& mixing 

of dynamics

multi-modal

nonlinearityill-conditioning

quality of 

proposal density

concentration

of measure

exploit

structure (e.g. 

exact filters)
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variation in initial uncertainty of x
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variation in eigenvalues of the plant (λ)
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variation in dimension of x
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variation in SNR

10
1

10
2

D
im

e
n

s
io

n
le

s
s
 E

rr
o

r

N = 1000, Stable, d = 10, Linear
 

SNR = 10 dB

15 dB

20 dB

30 dB

, λλλλ = 0.6

25 Monte Carlo Trials

0 5 10 15 20 25 30
10

-1

10
0

Time

D
im

e
n

s
io

n
le

s
s
 E

rr
o

r

 



variation in process noise
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particle flow filter

• orders of magnitude faster than standard particle filters

• orders of magnitude more accurate than the extended 

Kalman filter for difficult nonlinear problems

• solves particle degeneracy problem using particle flow 

induced by log-homotopy for Bayes’ rule

• no resampling of particles• no resampling of particles

• no proposal density

• no importance sampling & no MCMC methods

• unnormalized log probability density

• embarrassingly parallelizable w/o resampling bottleneck 

(unlike other particle filters)

• exploits smoothness & regularity of densities
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particle flow filter is many orders of magnitude faster 

real time computation (for the same or better 

estimation accuracy)

3 or 4 orders of 

3 or 4 orders of 
magnitude faster 

per particle

avoids 
bottleneck in 

many 
orders of 

magnitude 
faster 

3 or 4 orders of 
magnitude 

fewer particles

bottleneck in 
parallel 

processing due 
to resampling
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History of Mathematics

1. Creation of the integers

2. Invention of counting

3. Invention of addition as a fast 

method of countingmethod of counting

4. Invention of multiplication as a 

fast method of addition

5. Invention of particle flow as a 

fast method of multiplication*
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fundamental PDE for exact particle flow:
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direct integration of fundamental PDE:
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more details of direct integration:
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Oh’s Formula for Monte Carlo errors 
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σ

Assumptions:

(1) Gaussian density (zero mean & unit covariance matrix)

(2) d-dimensional random variable

(3) Proposal density is also Gaussian with mean ε and covariance 
matrix kI, but it is not exact for k ≠ 1 or ε ≠ 0

(4) N = number of Monte Carlo trials
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1. derive PDE

2. solve PDE

82

3. test solution



difficulties for exact finite dimensional filters 

vs. particle filters

Bayes’ update of 

conditional density 

of x

prediction of 

conditional density 

of x with time

1. exact filters 

(e.g., Daum 1986)

easy hard

(e.g., Daum 1986)

2. particle filters hard easy

3. hybrid of exact 

& particle filters

? ?
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type of 

nonlinear 

filter

statistics computed computational

complexity

estimation 

accuracy

representation 

of probability 

density

extended

Kalman filters

mean vector & 

covariance matrix d³

sometimes good 

but often highly 

suboptimal

mean vector & 

covariance matrix

unscented

Kalman filters

mean vector & 

covariance matrix d³

sometimes better 

than EKF but 

sometimes worse

mean vector & 

covariance matrix

batch least 

squares

mean vector & 

covariance matrix d³

sometimes better 

than EKF but 

sometimes worse

mean vector & 

covariance matrixd³
sometimes worse

numerical 

solution of 

Fokker-Planck 

PDE

full conditional 

probability density of 

state
curse of 

dimensionality

optimal* points in state space 

and/or smooth 

functions

particle filters

full conditional 

probability density of 

state

curse of 

dimensionality

optimal* particles

exact recursive 

filters (Kalman, 

Beneš, Daum, 

Wonham, Yau)

full conditional 

probability density of 

state

polynomial in d

(for special 

problems)

optimal 

(for special 

problems)

sufficient

statistics
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What is a particle filter?
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Prediction of  

conditional

probability 

density from 

tk-1 to tk

Update conditional 

probability density

particles particles

Particle Filter

Probability

density is

represented 

by particles

measurements

Importance sampling

from proposal density

(Monte Carlo or QMC

sampling)

probability density

using current

measurement 

& Bayes’ rule

particles

Monte 

Carlo

or QMC

simulation 

of dynamics
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Why engineers like particle filters:

• Very easy to code

• Extremely general dynamics & measurements: 
nonlinear & non-Gaussian

• Optimal estimation accuracy (if you use enough • Optimal estimation accuracy (if you use enough 
particles….)

• You don’t need to know anything about 
stochastic differential equations or any fancy 
numerical methods for solving PDEs

• Some people (erroneously) think that PFs beat 
the curse of dimensionality
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chicken & egg problem

How do you pick a 

good way to represent 

the product of two 

functions before you functions before you 

compute the product 

itself?
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