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nonlinear filtering problem

dx = F(x, t)dt + G(x, t) dw

x = d-dimensional state vector
t = time
w(t) = process noise vector

z(t,) = H(x(ty), t,, v})

z(t,) = m-dimensional measurement vector
t, = time of k' measurement
V) = measurement noise vector

p(x, t |1 Z,) = probability density of x at time t given Z,

Z, = set of all measurements up to & including time t,
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Dimensionless Error
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exact flow: performance vs. number of particles

A = 1.2, Linear, Large Initial Uncertainty
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Velocity Error (m/sec)
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exact flow filter is many orders of magnitude faster per
particle than standard particle filters
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particle flow filter 1s many orders of magnitude faster
real time computation (for the same or better
estimation accuracy)

3 or 4 orders of
magnitude
fewer particles

many

orders of

magnitude
faster

avoids
bottleneck in
parallel
processing due
to resampling



nonlinear filter

prediction of

conditional

probability

density from
t,tot,

measurements




particle degeneracy

likelihood of
measurement

—

\ particles to represent the prior
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induced flow of particles
for Bayes’ rule

prior posterior

flow of density '
log p(x,A) =log g(x)+ Alog h(x)

sample from
density

sample from
density

flow of particles

dx
E - f(x9 ﬂ’)
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linear first order highly underdetermined PDE:

oq(x, )

X

div(g(x,A)) = Tr[

n(x,A)=—p(x,A)log h(x)
9%, + 9, + ...+ 9,

}=numb

n= like Gauss’ divergence
ax1 axQ axd law 1n electromagnetics
q=pf
function values are f = unknown function

only known at
random points in d-
dimensional space

p & n = known at random points

We want dx/dA = f(x,A)
to be a stable dynamical
system. 12



method to solve PDE how to pick unique solution computation
1. generalized inverse of linear differential minimum norm* fast Poisson solver in d-dimensions or
operator Coulomb’s law or other
2. Poisson’s equation gradient of potential* fast Poisson solver in d-dimensions or
(assume irrotational flow) Coulomb’s law or other

3. generalized inverse of gradient of log- assume incompressible flow (i.e., fast (but need to compute the
homotopy divergence free flow) gradient from random points)

4. most general solution most robustly stable filter or random fast (but need to compute the
pick, etc. gradient from random points)




exact particle flow for Gaussian densities:

B )

dA
log(h) = —div(f)— algg Ly
X

for g & h Gaussian, we can solvefor f exactly:

_ automatically stable
J=Axth under very mild
2 ' extremely fast

b=(I+224)(1 + A)PHT Rz + AX]
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effect of divergence of f:

dx
A
) f(x,)
. dlog p
log(h) =—div(f)— f
ox
dlogp | ,
f=- - llog i+ div( )]
it div(f) = 0
we get
incompressible

\ flow




incompressible particle tlow

T
dx _log(h)(algf pj
di dlog p
0x
dx

——=0 for zero gradient
dA



solving Poisson’s equation:

dx [ovx A
= ren=| "

T{M} =—logh(x)p(x,A)

} / p(x,A)

ox*

C
2y

V(x,A) = [logh(y)p(y,A) -
X=y

in which
c= r(g —1)/4x"?

integration by parts yields:

dV(x,A) _ dlogh(y)p(y,A) ¢
_ I d-2 dy
n v ol
or without integration by parts:
dV(x,A) cR-d)(x—y)"

= [logh(»)p(y, )

X =l

dy

Poisson’s
equation
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d-dimensional Coulomb’s law:

ford=3
r D
VeA) [1ogn(y)p(y.2) @-d)x—y) 4 like
x ARl Coulomb’s
w = E[log h(y)c2—d)(x—y)" /|x— yH"] law )
WD) S 1og nx ypx, Ay - D~ X)
ax JES; X, — xjH

in whichS. is the set of k - nearest neighbors to thei® particle
x, =i" particle

where E(.) denotes the expected value wrt the probability density p(y).
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(1) Flavia Lanzara , Vladimir Maz’ya & Gunther Schmidt

“On the fast computation of high dimensional volume
potentials” arX1v:0911.0443v1 [math.NA] 2 Nov 2009

note: linear computational complexity in d for uniform grid,
and 1t can be extended to scattered data!

(2) huge literature on fast Poisson solvers (e.g., FMM
Rokhlin, Beylkin, Coifman, Hackbush, et al.)
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Time =1, Frame 1

(oas/Bap) a1ey o|buy

200

150

-100 -50

-150

Angle (deg)

21



Time =1, Frame 2
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Time =1, Frame 3
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Time =1, Frame 4
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Time =1, Frame 5
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Time =1, Frame 6
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Time =1, Frame 7
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Time =1, Frame 8
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Time =1, Frame 9
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Time =1, Frame 10
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direct integration of PDE

use the divergence form of the PDE :

div(q(x,A)) =1(x,4)

_ %4, + 99, +..+ %,
dx, Ox, ox,

g = exact solution t o related problem div(q) =7
div(q-q)=n-7
pick all but one component of q=q

/]

q;=q;+ _‘.77(35,1) — 17 (x, A)dx,

q; = gj +xj[77(xaﬂv)—ﬁ()€,/l)]+ H.OT.
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most general solution for exact flow:

dx fundamental

A =f(x4) PDE for exact
particle flow y

log(h) = —div( /)~ 2L 1

the most general solution 1s:
f =-C*logh+(I-C"C)y
in which C 1s a linear differenti al operator :

dlogp

C= + div

ox

C" = generalized inverse of C

y =arbitrary d - dimensional vector
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finite dimensional parametric approximation:

Blogp

= |[log(h) +

let f(x,A) = A(/l)x +b(A)

2
= |log(h) + dlogp

(Ax+b)+Tr(A)

X

(1) solve for A & b to minimize J at each particle x

(2) couldlet A =-BB' to force stability of flow
(3) could also add penalty to make flow robustly stable

(4) note that div(f) = Tr(A) = > A.(A)
(5) however, computational complexity is d°, but for

sparse A this can be reduced to only d’



hybrid method:

We want to find a flow f(x, A) that satisfies the following PDE :

alogap(x,ﬂ) £ +div(f)=—logh(x)
X

Without loss of generality, let f(x,4) = A(A)x +b(A) +c(x, A1)

in which A & b are computed from our exact solution with g & h

Gaussian using an EKF (as usual for our exact flow) :

dlogp
0x

Assume that div(c) = 0, and compute the minimum norm c(x, A) :

(alogpj#{alog p }
C~— (Ax+b)+Tr(A)+log(h)
0x ox

in which (.)* denotes the pseudo - inverse of (.):

(alogpj# :(alogpjT/
ox ox

(Ax+b+c)+Tr(A)+div(c) =—log(h)

2

dlog p
ox




Dimensionless Error

d=12,n =3,y = x2, SNR = 20dB
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nonlinearity
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Dimensionless Error

d=12,n =3,y = x3, SNR = 20dB

cubic measurement
nonlinearity

10°
10

2

3 4 5

10 10 10
Number of Particles

36



particle flow filter

orders of magnitude faster than standard particle filters

orders of magnitude more accurate than the extended
Kalman filter for difficult nonlinear problems

solves particle degeneracy problem using particle flow
induced by log-homotopy for Bayes’ rule

no resampling of particles

no proposal density

no importance sampling & no MCMC methods
unnormalized log probability density

embarrassingly parallelizable w/o resampling bottleneck
(unlike other particle filters)

exploits smoothness & regularity of densities

37



particle flow filter 1s many orders of magnitude faster
real time computation (for the same or better
estimation accuracy)

3 or 4 orders of
magnitude
fewer particles

many

orders of

magnitude
faster

avoids
bottleneck in
parallel
processing due
to resampling
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exact particle flow & Poisson’s equation:

dx
a - f(x’ 2“)

q(x,A)=p(x,A) f(x,4)

logh(x)p(x,A) = —Tr[

divergence
form of

PDE

obviouslythere is no uniquesolution,

so pick the unique minimum norm solution:

() = IV(x, 1)
ox
2
TI”|:a Va()g’ ﬂ)} =—logh(x)p(x,A)
* Poisson’s
ax _ f(x,A)= WxA), p(x,A) equation
dA ox
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incompressible particle tlow

T
dx _log(h)(algf pj
di dlog p
0x
dx

——=0 for zero gradient
dA



method to solve PDE how to pick unique solution computation
1. generalized inverse of linear differential minimum norm* fast Poisson solver in d-dimensions or
operator Coulomb’s law or other
2. Poisson’s equation gradient of potential* fast Poisson solver in d-dimensions or
(assume irrotational flow) Coulomb’s law or other

3. generalized inverse of gradient of log- assume incompressible flow (i.e., fast (but need to compute the
homotopy divergence free flow) gradient from random points)

4. most general solution most robustly stable filter or random fast (but need to compute the
pick, etc. gradient from random points)




angles only tracking
y d =6 and N = 500 particles
exact flow filter
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Tincknell angle = 90 deg
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Tincknell angle = 25 deg
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Tincknell angle = 10 deg
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exact particle flow for Gaussian densities:

Lo

dA
log(h) = —div(f) - algg” f
X

for g & h Gaussian, we can solvefor f exactly:

_ automatically stable
f=Ax+h under very mild
2 ' extremely fast

b=(I+224)(1 + A)PHT R 7 + AX]
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5 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 10.6 percent, Magenta: truth, Green: PF estimate, Black: KF

@
<

0.8;

-0.8



Inside = 13.8 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 16.6 percent, Magenta: truth, Green: PF estimate, Black: KF

|

|

|

|

|

|

|

|

|

L |
© ©
o o

-0.8!

-0.8



Inside = 17.6 percent, Magenta: truth, Green: PF estimate, Black: KF
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21 percent, Magenta: truth, Green: PF estimate, Black: KF
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21 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 23.8 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 26.4 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 27.6 percent, Magenta: truth, Green: PF estimate, Black: KF
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incompressible particle tlow

T
dx _log(h)(algf pj
di dlog p
0x
dx

——=0 for zero gradient
dA



6 percent, Magenta: truth, Green: PF estimate, Black: KF
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5.8 percent, Magenta: truth, Green: PF estimate, Black: KF
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8.2 percent, Magenta: truth, Green: PF estimate, Black: KF

Inside

7

e

ool

)

-

uBISSeH

-0.8!

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8



Inside = 9.2 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 11.2 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 11.8 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 12.8 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 12 percent, Magenta: truth, Green: PF estimate, Black: KF
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Inside = 11.6 percent, Magenta: truth, Green: PF estimate, Black: KF

|

|

|

|

|

|

|

|

|

L |
© ©
o o

-0.8!

uBISSeH

-0.8



nonlinear filter performance (accuracy wrt
optimal & computational complexity)

DIMENSION ]
sparseness process noise

initial uncertainty
of state vector

smoothness

exploit

measurement
structure (e.g.

exact filters) noise
stability
concentratio & mixing

of measure of dynamics

quality of

; multi-modal
proposal density
ill-conditioning nonlinearity
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Dimensionless Error
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Dimensionless Error
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Dimensionless Error
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variation in SNR

N = 1000, Stable, d = 10, Linear, A = 0.6
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Dimensionless Error

variation in process noise

N = 1000, Stable, d = 10, Quadratic, A = 0.6
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particle flow filter

orders of magnitude faster than standard particle filters

orders of magnitude more accurate than the extended
Kalman filter for difficult nonlinear problems

solves particle degeneracy problem using particle flow
induced by log-homotopy for Bayes’ rule

no resampling of particles

no proposal density

no importance sampling & no MCMC methods
unnormalized log probability density

embarrassingly parallelizable w/o resampling bottleneck
(unlike other particle filters)

exploits smoothness & regularity of densities
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particle flow filter 1s many orders of magnitude faster
real time computation (for the same or better
estimation accuracy)

3 or 4 orders of
magnitude
fewer particles

many

orders of

magnitude
faster

avoids
bottleneck in
parallel
processing due
to resampling
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History of Mathematics

1. Creation of the integers
2. Invention of counting

3. Invention of addition as a fast
method of counting

4. Invention of multiplication as a
fast method of addition

5. Invention of particle flow as a
fast method of multiplication®
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fundamental PDE for exact particle flow:

dx

— = f(x, A) Fokker-Planck

dA /E equation with Q =0 }
op(x,A) —Tr[a(pf)}

oA 0x
dlog p(x, 1 p(x,A) = —Tr|:a(pf):| log-homotopy }
oA 0x
log p(x,A) =log g(x)+ Alog h(x)

log h(x) p(x, A) = —p(x, zm[ai} _op
x | oOx

. dlo gp first order linear
log(h) =—div(f) — 3 f underdetermined
X PDE in f(x)




direct integration of fundamental PDE:

use the divergence form of the PDE :

div(q(x, 1)) = Tr[aq (ax”l)} =1(x,A)

X
n = dq, BQ2 I dq,,
ox, ax2 ox,
3 5 pick for best
q] _ —Z %4k stability of

o = 0x, particle flow

q;(x) = _( () - 0, (x)]dxj

d
0.(x)= Z % = arbitrary function (except for compatibility conditions )
k#j k

Assuming regularity conditions on 77 and Q, a solution for q(x, A) exists

iff [7(x)dx =0.
Q
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more details of direct integration:

div(q) =1(x)

Xk

q, = I[U(X) — p(x, )-[Qk n(x)dx, }dxk fork >2

in which

p(X, ) = arbitrary function such that

| px)dx, =1
Q

assuming smooth functions with compact support,
and € is bounded, open, connected smooth set,

a necessary & sufficient condition for the existence

of a solution q(x) 1s that j nx)dx =0
Q
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Oh’s Formula for Monte Carlo errors

(1)
2)
3)

4)

1+ ’
X exXp £ > [N

12k | [ 1+2k

U

Assumptions:
Gaussian density (zero mean & unit covariance matrix)
d-dimensional random variable

Proposal density is also Gaussian with mean € and covariance
matrix kI, but it is not exactfork #1 ore #0

N = number of Monte Carlo trials
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1. derive PDE
2. solve PDE
3. test solution




difficulties for exact finite dimensional filters
vs. particle filters

Bayes’ update of | prediction of
conditional density |conditional density
of x of x with time

1. exact filters
(e.g., Daum 1986)

2. particle filters

3. hybrid of exact
& particle filters
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type of statistics computed | computational | estimation representation

nonlinear complexity accuracy of probability

filter density

extended mean vector & sometimes good mean vector &

Kalman filters covariance matrix d3 but often highly covariance matrix
suboptimal

unscented mean vector & sometimes better | mean vector &

Kalman filters covariance matrix d3 than EKF but covariance matrix
sometimes worse

batch least mean vector & sometimes better mean vector &

squares covariance matrix d3 than EKF but covariance matrix
sometimes worse

numerical full conditional

solution of probability density of curse of optimal* points in state space

Fokker-Planck state dimensionality and/or smooth

PDE functions

full conditional
particle filters probability density of curse of optimal* particles
state dimensionality

exact recursive full conditional polynomial in d optimal sufficient

filters (Kalman, | probability density of (for special (for special statistics

Benes, Daum, state problems) problems)

Wonham, Yau)
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What 1s a particle filter?
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particles

Particle Filter

\ 4

Prediction of

particles measurements

conditional

probability

density from
t, tot,

particles
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Why engineers like particle filters:

Very easy to code

Extremely general dynamics & measurements:
nonlinear & non-Gaussian

Optimal estimation accuracy (if you use enough
particles....)

You don’t need to know anything about
stochastic differential equations or any fancy
numerical methods for solving PDEs

Some people (erroneously) think that PFs beat
the curse of dimensionality
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chicken & egg problem




