Localization of Non-Linguistic Events in Spontaneous Speech by Non-Negative Matrix Factorization and Long Short-Term Memory

Felix Weninger, Björn Schuller, Martin Wöllmer, Gerhard Rigoll Institute for Human-Machine Communication Technische Universität München, Germany

Outline

- Background and Motivation
- The Features: Non-Negative Matrix Factorization
- The Classifier: Long Short-Term Memory
- Evaluation: Buckeye Corpus
- Conclusions

2

Background and Motivation

- Localization of non-linguistic segments: laughter, vocal noise, environmental noise, ...
- Gain paralinguistic information
- Increase word accuracy
- Inside / outside ASR framework?
- Here:
 - Data-based approach
 - Frame-wise context-sensitive classification

Background and Motivation (2)

- NMF+SVM classification (Schuller and Weninger 2010)
 - Speech / non-linguistic segments
 - Functionals of NMF activations
 - Outperformed MFCC features
- Now: Include segmentation
 - Bidirectional Long Short-Term Memory RNN
 - Successfully used for phoneme recognition

NMF for Audio Processing

Open-source toolkit: openBliSSART (http://openblissart.github.com/openBliSSART)

NMF Algorithm

- Multiplicative updates for **W** and **H**
- Minimization of cost d(V, WH)
 - [Euclidean distance] (Schuller and Weninger 2010)
 - Kullback-Leibler divergence (NMF-KL)

$$d_1(\mathbf{V}|\mathbf{W}\mathbf{H}) = \sum_{i,j} [\mathbf{V}]_{ij} \log \frac{[\mathbf{V}]_{ij}}{[\mathbf{W}\mathbf{H}]_{ij}} - [\mathbf{V} - \mathbf{W}\mathbf{H}]_{ij}$$

- Itakura-Saito divergence (NMF-IS)

$$d_0(\mathbf{V}|\mathbf{W}\mathbf{H}) = -MN + \sum_{i,j} \frac{[\mathbf{V}]_{ij}}{[\mathbf{W}\mathbf{H}]_{ij}} - \log \frac{[\mathbf{V}]_{ij}}{[\mathbf{W}\mathbf{H}]_{ij}}$$

NMF Likelihood Features

W (predefined, NMF on training data)

NMF Likelihood Features

W (predefined, NMF on training data)

+energy

Long Short-Term Memory

- Conventional RNN: Context range limited
 - Weights decay exponentially over time
 - "Vanishing gradient problem"
- Solution: LSTM memory cells
 - Internal state maintained by 1.0-connection
 - Input, output, memory controlled by multiplicative gate units
 - Automatically learn required amount of context

RNN Configurations

	Unidir.	Bidir.
Logistic units	RNN	BRNN
LSTM cells	LSTM	BLSTM

- 3 Layers:
 - Input: 39 (PLP) / 83 (NMF)
 - Hidden: 80 / 120
 - Output: 4 (posterior prob.)
- Bidirectional: 2 input / hidden layers

Evaluation: Buckeye Corpus

- > 25 hours of spontaneous speech
- 40 speakers (20 male, 20 female)
- Speaker-independent evaluation
 - Training, validation, test set stratified by age / gender
 - Subdivision in ascending order of speaker ID
- Automatic alignment
 - SPeech, LAughter, Vocal Noise, Other Noise

Evaluation: Buckeye Corpus

[sec]	train	valid	test	\sum
SP	62 974	7 0 5 0	7960	77 983
LA	1 562	252	104	1 918
VN	9 4 4 4	1 3 3 6	1087	11 867
ON	398	94	30	522
\sum	74378	8732	9181	92 290

12

Evaluation: Baseline HMM-ASR

- PLP coefficients 1-12 + RMS Energy + δ + $\delta \delta$
- 9.1 K Back-off bi-gram language model (Buckeye training set)
- Monophones:
 - 39 phoneme models (3 states); silence + sp
 - 3 non-linguistic models (LA, VN, ON) with 6 states
- State-clustered triphones, 16/32 mixtures
- Word accuracy: 50.0%

Results (1): Types of RNNs

Results (2): BLSTM Size and Features

F1 [%]	PLP		NMF-IS		NMF-KL	
# units	80	120	80	120	80	120
SP	96.69	96.67	96.77	96.81	96.80	96.96
LA	44.54	44.53	37.59	35.83	40.01	45.95
VN	75.08	75.07	73.54	72.41	72.64	75.79
ON	38.29	44.12	39.31	32.54	39.09	50.76
UA	63.65	65.10	61.80	59.40	62.14	67.37
WA	93.39	93.38	93.26	93.16	93.28	93.82

Results (3): BLSTM-NMF vs. HMM-PLP

[%]	HMM-ASR (PLP)			BLSTM (NMF-KL)		
	REC	PR	F1	REC	PR	F1
SP	93.85	97.68	95.72	97.62	96.31	96.96
LA	50.63	45.47	47.91	61.70	36.61	45.95
VN	78.41	63.84	70.38	69.58	83.22	75.79
ON	39.92	14.78	21.57	49.98	51.56	50.76
UA	65.70	55.44	58.90	69.72	66.92	67.37
WA	91.35	92.79	92.06	93.71	93.92	93.82

WA REC 91.35 → 93.71% : p < .001

Conclusions

- BLSTM-NMF vs. HMM-ASR: 37.5% relative reduction of frame-wise error rate
- Best results with KL divergence
- Future work:
 - Use BLSTM prediction / NMF likelihoods in multistream HMM-ASR
 - Context-sensitive NMF features
 (deconvolution algorithm, etc.)

Thank you.

