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Motivation

In order to show that a sparse signal can be recovered exactly from a
limited number of measurements, Candès and Tao introduced the
restricted isometry property (RIP)†:

Let R be an K ×N matrix, where K < N , and s a positive integer. Then
δs is the smallest number such that

(1 − δs) ‖x‖22 ≤ ‖Rx‖22 ≤ (1 + δs) ‖x‖22

for all x such that ‖x‖0 ≤ s.

Here, δs is a number that measures how much R acts like an isometry on
s−sparse vectors.
† Candès E. and Tao T., ”Decoding by linear programming”, IEEE Trans. Inf. Theory 51, 4203-4215, 2005.
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Motivation

Chartrand and Staneva proposed a variant of the RIP to show that lp
minimization may be used to recover sparse signals†:

Let R be an K × N matrix, where K < N , L a positive integer and
0 < p ≤ 1. Then δL is the smallest number such that

(1− δL) ‖x‖p2 ≤ ‖Rx‖p2 ≤ (1 + δL) ‖x‖p2

for all x such that ‖x‖0 ≤ L.

They used this result to show that lp minimization requires fewer
measurements than l1 minimization. In this case, the entries of R are
Gaussian realizations.

† R. Chartrand and V. Staneva, ”Restricted isometry properties and nonconvex compressed sensing”, Inverse Problems, vol. 24, no. 3,

June 2008.
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Motivation

The latter result can be extended to R having α−stable distributions if
1 ≤ α ≤ 2:

Let R be an K × N matrix, where K < N , s a positive integer and
p < α/2. Then, for a given δ

(1− δ) ‖x‖pα < ‖Rx‖pp < (1 + δ) ‖x‖pα

for all x such that ‖x‖0 = s.

Despite that the variance of α−stable variables is infinite, this RIP may
hold with probability greater than 1− 1/

(

N
s

)

.
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Motivation

ℓ2 based dimensionality reduction: ℓ1 based dimensionality reduction:
‖Rx2 − Rx1‖2ℓ2 ≈ ‖x2 − x1‖2ℓ2 ‖Rx2 − Rx1‖pℓp ≈ ‖x2 − x1‖pℓ1 ; p < 1/2
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Motivation

ℓ2 based dimensionality reduction: ℓ1 based dimensionality reduction:
‖Rx2 − Rx1‖2ℓ2 ≈ ‖x2 − x1‖2ℓ2 ‖Rx2 − Rx1‖pℓp ≈ ‖x2 − x1‖pℓ1 ; p < 1/2

ℓ2 RIP: ℓp RIP:
(1− δ)‖x‖2ℓ2 ≤ ‖Rx‖2ℓ2 ≤ (1 + δ)‖x‖2ℓ2 (1 − δ)‖x‖pℓ1 ≤ ‖Rx‖pℓp ≤ (1 + δ)‖x‖pℓ1

R ∼ Gaussian or subgaussian R ∼ α-stable

Why?: ℓ1 norm is more robust and sparse inducing!

†Adapted from Lecture Notes - R. Baraniuk
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Motivation

¿Why?

α-stable distributions preserve the lα norm. This one is more robust
to noise, missing data, and outliers, than the l2 norm.

lp minimization may be used using α−stable random projections.
Furthermore, lp minimization requires fewer measurements as p
tends to zero.

α−stable random projections are more robust to Gaussian noise and
impulsive noise† than random projections with finite variance.

† If the impulsive noise has parameter α′ , and α < α
′ , this is true.
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α−stable Random Projections

The characteristic function for symmetric α−stable distributions ( SαS),
with location parameter zero and dispersion γ

ϕ(t) = e−|γt|α
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α−stable Random Projections

Let ri ∼ SαS(0, α, γi ) and y be the linear combination of n i.i.d. SαS
random variables: y = r1x1 + r2x2 + · · ·+ rnxn.
Stable law dictates that

y ∼ SαS(0, α, γ)

γ = (|x1γ1|α + |x2γ2|α + · · ·+ |xnγn|α)1/α.

When the ri ∼ SαS(0, α, 1), the dispersion of y is the lα norm of the
scalars of the linear combination.

y ∼ SαS(0, α, γ)

γ = (
n
∑

i=1

|xi |α)
1
α = ‖x‖α

Thus, α−stable distributions preserve the lα norm.
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α−stable Random Projections. Cauchy
random projections (α = 1)

Cauchy random projections arise as a solution to ℓ1 distance preservation
in Dimensionality reduction applications.

Let ri ∼ SαS(0, 1, 1) , C (0, 1) then

y =

n
∑

i=1

rixi ∼ C

(

0,

n
∑

i=1

|xi |
)

For two vectors: y1 =
∑n

i=1 r1,ix1,i and y2 =
∑n

i=1 r2,ix2,i

uj = y1 − y2 ∼ C

(

0,
n
∑

i=1

|x1,i − x2,i |
)

= C (0, ‖x1 − x2‖)

In Cauchy random projections, ℓ1 distance estimation reduces to estimate
the scale parameter γ from k i.i.d. samples uj ∼ C (0, γ)

- 10



α−stable Random Projections

SαS do not have finite variance, but its dispersion may be estimated
using the fractional moment of order p. If p < α, this moment is finite
and it is given by:

E (|x |p) = 2p+1Γ(−p/α)

α
√
πΓ(−p/2)

Γ

(

p + 1

2

)

γp.

From the latter expression, the following non-linear estimator follows

E
(

‖X‖pp
)

= E

(

1

k

k
∑

i=1

|xi |p
)

= k
2p+1Γ(−p/α)

α
√
πΓ(−p/2)

Γ

(

p + 1

2

)

γp

The lpp norm of a vector –which components are α−stable realizations– is
an estimate of the dispersion of its entries.
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Restricted−p Isometry Property (RIPp)

Theorem. Let R be an K × N matrix whose elements are i .i .d .
alpha-stable realizations with 1 ≤ α ≤ 2, which is multiplied by a scalar
which depends only on K , α and p. Let ‖x‖0 = s, if
K ≥ C1s log (N/s) + C2s + C3 and 0 < p < α/2, then, for a given δ

(1− δ) ‖x‖pα < ‖Rx‖pp < (1 + δ) ‖x‖pα

holds with probability greater than 1− 1/
(

N
s

)

.
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Restricted−p Isometry Property (RIPp)

The proof of the theorem uses probabilistic methods. Rather than
focusing on the values of the RIC, we choose a δ such that the RIP holds
with high probability.

The proof will be divided in three lemmas and a proof that gathers the
results obtained in the lemmas:

Lemma 1. Probability that the RIP holds for a fixed x such that
x ∈ R

s and ‖x‖0 = s.

Lemma 2. Probability that the RIP fails for any x ∈ R
s having the

same ‖x‖pα such that ‖x‖0 = s.

Lemma 3. Probability that the RIP fails for any submatrix of the
matrix R.
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Restricted−p Isometry Property (RIPp)

Lemma 1. Let T be a set of indices with |T | = s (1 ≤ s ≤ N), denote
by XT the set of discrete signals in R

s that are zero outside of T . Let Ψ
be an K × s submatrix of Φ formed with the columns whose indices are
in T . If 0 < p < α/2 and for a x ∈ XT , then, for a given η > 0

(1 − η)KCµ(α, p) ‖x‖pα < ‖Ψx‖pp < (1 + η)KCµ(α, p) ‖x‖pα

holds with probability lower-bounded by 1− 2e
− Kη

2

2(1+η)2
C(α,p)

.
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Restricted−p Isometry Property (RIPp)

Proof : Let y = Ψx , where x is a vector that belongs to XT . The
resultant vector y has K components, each one given by

yi =
s
∑

i=1

ψijxj ∼ SαS(0, ‖x‖α).

The lpp norm of y is equal to

‖y‖pp = ‖Ψx‖pp =

K
∑

i=1

∣

∣

∣

∣

∣

∣

k
∑

j=1

ψijxj

∣

∣

∣

∣

∣

∣

p

=

K
∑

i=1

|yi |p.

This implies that in average ‖Ψx‖pp tends to

E (‖Ψx‖pp) = K
2p+1Γ(−p/α)

α
√
πΓ(−p/2)

Γ

(

p + 1

2

)

‖x‖pα

= KCµ(α, p)‖x‖pα.

for 0 < p < α.
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Restricted−p Isometry Property (RIPp)

If 0 < p < α/2, the variance of the estimator ‖Ψx‖pp is finite as well

Var(‖Ψx‖pp) = Var

(

K
∑

i=1

|yi |p
)

= KCµ(α, 2p)‖x‖2pα − KCµ(α, p)
2‖x‖2pα

= KCσ2(α, p)‖x‖2pα .

The distribution of ‖Ψx‖pp may be approximated with a Gaussian,
however, a much better approximation may be done using a distribution
with the same support of ‖Ψx‖pp : the Inverse Gaussian.
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Restricted−p Isometry Property (RIPp)

If X follows an inverse Gaussian distribution, it can be shown that X has
the following Chernoff bound:

P(|X− µ| < ηµ) ≥ 1− 2e
− η

2

2(1+η)

(

µ
2

σ2

)

.

It follows that

P(| ‖Ψx‖pp − µ| < ηµ) ' 1− 2e
− Kη2

2(1+η)2
C(α,p)

= 1− Pα,p,K (η).

Where C (α, p) = Cµ(α, p)
2/Cσ2(α, p). If η is chosen properly, the RIP

holds with high probability for a fixed x .
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Restricted−p Isometry Property (RIPp)

Lemma 2. Let 0 < p < α/2, Ψ a K × s submatrix of Φ as in Lemma 1.

Let δ > 0 and choose ǫ > 0 for a given η such that η+ǫp

1−ǫp ≤ δ. Then for
any x ∈ R

s

(1− δ)KCµ(α, p) ‖x‖pα < ‖Ψx‖pp < (1 + δ)KCµ(α, p) ‖x‖pα (1)

holds with probability ' 1− (1 + 2/ǫ)sPα,p,K (η).
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Restricted−p Isometry Property (RIPp)

Lemma 3. Let Φ be an K × N matrix, x ∈ R
N and ‖x‖0 = s. Let

0 < p < α/2 and δ > 0, then

(1− δ)KCµ(α, p) ‖x‖pα < ‖Φx‖pp < (1 + δ)KCµ(α, p) ‖x‖pα

with probability ' 1− (eN/s)s(1 + 2/ǫ)sPα,p,K (η).
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Restricted−p Isometry Property (RIPp)

Proof of the Theorem. According to Lemma 3, we have

(1− δ)KCµ(α, p) ‖x‖pα < ‖Φx‖pp < (1 + δ)KCµ(α, p) ‖x‖pα
(1− δ) ‖x‖pα <

∥

∥

∥
(KCµ(α, p))

−1/pΦx
∥

∥

∥

p

p
< (1 + δ) ‖x‖pα .

Letting R equal to (KCµ(α, p))
−1/pΦ, we obtain

(1− δ) ‖x‖pα < ‖Rx‖pp < (1 + δ) ‖x‖pα .

Then, the probability that the RIP fails is approximately less or equal
than

(

eN
s

)s (

1 + 2
ǫ

)s
Pα,p,K (η).

With a number of projections given by: K ' C1s log(N/s) + C2s + C3
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Computer Simulations

Sparse Signal Reconst. from Cauchy Random Proj. Noisy Case (α=1.2)

Model: y = Rx + η; fη(x) =
1
2π

∫∞

−∞ ϕ(t; 0, α, γ) exp−ixt dt.

n = 400, k = 100, s = 8.

ℓ0 − LL: ℓ0-regularized coordinate-descent Myriad-based regression.

ℓ1 − ℓs : ℓ1-regularized least squares.

ℓ0 − LL ℓ1 − ℓs

γ = 0.5, MSE=-40.1dB γ = 0.5. MSE=-24.9dB
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Computer Simulations

Number of required measurements. Noiseless case.

Model: y = Rx .
n = 300, s = 6.
Reconstruction method: ℓ0-regularized coordinate-descent
Myriad-based regression.
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Conclusions

A new RIP for SαS random matrices with 1 ≤ α ≤ 2 has been
formulated.

Useful applications such as methods of robust statistics,
reconstruction algorithms, among others.

As p → 0, less measurements are required for the RIP to hold with
high probability.

The restricted isometry constants (RIC) for this new RIP remain as
an open problem.
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