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MOTIVATION

In order to show that a sparse signal can be recovered exactly from a
limited number of measurements, Candés and Tao introduced the
restricted isometry property (RIP)T:

Let R be an K x N matrix, where K < N, and s a positive integer. Then
ds is the smallest number such that

2 2 2
(1 =05 [Ix[lz < [Rx[lz < (1 +65) [Ix][3
for all x such that [|x||, <'s.

Here, ds is a number that measures how much R acts like an isometry on
Ss—sparse vectors.

T Candes E. and Tao T., "Decoding by linear programming”, IEEE Trans. Inf. Theory 51, 4203-4215, 2005.



MOTIVATION

Chartrand and Staneva proposed a variant of the RIP to show that /,
minimization may be used to recover sparse signals':

Let R be an K x N matrix, where K < N, L a positive integer and
0 < p <1. Then ¢, is the smallest number such that

(1= 60) [Ix[I3 < IRx[I3 < (1 +d.) [IxI3
for all x such that ||x||, < L.

They used this result to show that /, minimization requires fewer
measurements than /; minimization. In this case, the entries of R are
Gaussian realizations.

T R. Chartrand and V. Staneva, "Restricted isometry properties and nonconvex compressed sensing”, Inverse Problems, vol. 24, no. 3,

June 2008.



MOTIVATION

The latter result can be extended to R having a—stable distributions if
1<a<2:

Let R be an K x N matrix, where K < N, s a positive integer and
p < «/2. Then, for a given ¢

(1= 8) [IxlI < IRxlg < (1 +9) [Ixlq
for all x such that ||x||, =s.

Despite that the variance of a—stable variables is infinite, this RIP may
hold with probability greater than 1 —1/(").



MOTIVATION

S-planes
{5 based dimensionality reduction: {1 based dimensionality reduction:
IRx2 — Rxt |7, = [|Ixe — xllZ, [Rx2 = Rx[l7 & [Ix2 — xllf,; p<1/2



MOTIVATION

S-planes
{5 based dimensionality reduction: {1 based dimensionality reduction:
IRx2 — Rxt |7, = [|Ixe — xllZ, [Rx2 = Rx[l7 & [Ix2 — xllf,; p<1/2
/> RIP: ¢, RIP:
(1 =0)IxII7, < IRx1Z, < (1 +9)IxI, (1 =0)lIxll7, < IRxI7, < (1 +3)|IxI7,
R ~ Gaussian or subgaussian R ~ a-stable

Why?: ¢1 norm is more robust and sparse inducing!

T Adapted from Lecture Notes - R. Baraniuk



MOTIVATION

iWhy?
@ a-stable distributions preserve the /, norm. This one is more robust
to noise, missing data, and outliers, than the / norm.

@ [, minimization may be used using a—stable random projections.
Furthermore, /|, minimization requires fewer measurements as p
tends to zero.

@ «—stable random projections are more robust to Gaussian noise and
impulsive noise’ than random projections with finite variance.

T If the impulsive noise has parameter o’ and o < &, this is true.



a—STABLE RANDOM PROJECTIONS

The characteristic function for symmetric a—stable distributions ( SaS),
with location parameter zero and dispersion y

p(r) = "




a—STABLE RANDOM PROJECTIONS

Let rj ~ SaS(0,a, ;) and y be the linear combination of ni.i.d. Sa$
random variables: y = rnxy + nxo + -+ + raXn.
Stable law dictates that

y ~ Sa5(0,a,7)

v = (|X171|u —+ |X2f'y2|a 4+ |Xn,.yn|a)1/a.

When the r; ~ SaS(0, o, 1), the dispersion of y is the |, norm of the
scalars of the linear combination.

y ~ Sa5(0,a,7)

n
1
v=0Q0 XM =lIxla
i=1

Thus, a—stable distributions preserve the /, norm.



a—STABLE RANDOM PROJECTIONS. CAUCHY

RANDOM PROJECTIONS (a0 =1)

Cauchy random projections arise as a solution to ¢; distance preservation
in Dimensionality reduction applications.

Let r; ~ SaS(0,1,1) £ C(0,1) then

y= irixi ~C (Qi |Xi|>
i—1 -1

For two vectors:  y1 =>.0 jnix,i and Yy, => " hix,

uy=y1—y2~C <0, > lxai— X2,i|> = C(0, [x1 — %))

i=1

In Cauchy random projections, ¢; distance estimation reduces to estimate
the scale parameter -y from k i.i.d. samples u; ~ C(0,~)

- 10



a—STABLE RANDOM PROJECTIONS

Sa$S do not have finite variance, but its dispersion may be estimated
using the fractional moment of order p. If p < «, this moment is finite
and it is given by:

2T (—pla) (p+1Y ,
aﬁr(—p/2)r< 2 )”'

From the latter expression, the following non-linear estimator follows

D\ 2 Cp/e) (1Y,
E(I1X12) (Zw) A ()

The 12 norm of a vector —which components are a—stable realizations— is
an estimate of the dispersion of its entries.

E([xP) =




RESTRICTED—p ISOMETRY PROPERTY (RIP,)

Theorem. Let R be an K x N matrix whose elements are i.i.d.
alpha-stable realizations with 1 < a < 2, which is multiplied by a scalar
which depends only on K, and p. Let ||x]jo = s, if

K > GCslog(N/s)+ Gs+ Gz and 0 < p < «/2, then, for a given ¢

(1 =) [IxlI < IRxIlg < (1 +0) [IxII5

holds with probability greater than 1 —1/(%).



RESTRICTED—p ISOMETRY PROPERTY (RIP,)

The proof of the theorem uses probabilistic methods. Rather than
focusing on the values of the RIC, we choose a § such that the RIP holds
with high probability.
The proof will be divided in three lemmas and a proof that gathers the
results obtained in the lemmas:
@ Lemma 1. Probability that the RIP holds for a fixed x such that
x € R® and ||x|jo = s.
@ Lemma 2. Probability that the RIP fails for any x € R® having the
same ||x||? such that ||x|lo = s.

@ Lemma 3. Probability that the RIP fails for any submatrix of the
matrix R.



RESTRICTED—p ISOMETRY PROPERTY (RIP,)

Lemma 1. Let T be a set of indices with |T| =s (1 < s < N), denote

by X1 the set of discrete signals in R® that are zero outside of T. Let W
be an K x s submatrix of ® formed with the columns whose indices are

in T. If 0 < p < a/2and for a x € X7, then, for a given > 0

(1 = n)KCu(e, p) [Ix[IE, < W]l < (1+n)KCu(e, p) [Ix]2,

Kn?
ﬁc(mp).

holds with probability lower-bounded by 1 — 2e™ 2@+n)



RESTRICTED—p ISOMETRY PROPERTY (RIP,)
Proof : Let y = Wx, where x is a vector that belongs to X7. The
resultant vector y has K components, each one given by

s

i=1
The 12 norm of y is equal to

p

K k K
Iyl = wxl2 = ST wax| =3 Il
i=1

i=1 | j=1

This implies that in average ||Wx||? tends to

oy 2P (—p/a)_(p+1 llP
(vl = k2P (B2 ) I

= KCu(a, p)|x|&-

for0< p<a.



RESTRICTED—p ISOMETRY PROPERTY (RIP,)

If 0 < p < /2, the variance of the estimator H\IJng is finite as well

K
Var(|[Wx|[}) = Var (Z |in">
i=1
= KCu(0, 2p)|Ix]|2F — KC,u( e, p)?[IxII27
= KCpa(ar, p)|x[I2F-

The distribution of ||\Ux|\g may be approximated with a Gaussian,
however, a much better approximation may be done using a distribution
with the same support of [[Wx||?: the Inverse Gaussian.



RESTRICTED—p ISOMETRY PROPERTY (RIP,)

If X follows an inverse Gaussian distribution, it can be shown that X has
the following Chernoff bound:

,niz<uﬁ)
P(IX — p| < nu) >1—2e 0m\o?),
It follows that
~C(a
P [Wx]|f = p| <nmu) 2 1—2e T Clen) _ g _ Pap.k (1)

Where C(a, p) = C,(a, p)?/C,2(c, p). If 1 is chosen properly, the RIP
holds with high probability for a fixed x.



RESTRICTED—p ISOMETRY PROPERTY (RIP,)

Lemma 2. Let 0 < p < /2, W a K X s submatrix of ® as in Lemma 1.
Let 6 > 0 and choose € > 0 for a given 7 such that ?f—i: < 4. Then for
any x € R?®

(1 = 0)KCpu(a, p) lIxllg, < Wxllp < (1 + 0)KCu(a, p) X[l (1)

holds with probability £ 1 — (1 4+ 2/€)*Pq p,k (1)-



RESTRICTED—p ISOMETRY PROPERTY (RIP,)

Lemma 3. Let ® be an K x N matrix, x € RV and ||x||, = s. Let
0<p<a/2and d >0, then

(1= 0)KCu(e, p) lIxllg < lI®xllp < (1+ 6)KCu(ev, p) [Ixll5,

with probability £ 1 — (eN/s)*(1 +2/€)*Pap.k(n).




RESTRICTED—p ISOMETRY PROPERTY (RIP,)

Proof of the Theorem. According to Lemma 3, we have
(1= 8)KCu(ev, p) [IxII7, < [[®x][|5 < (1 + §)KCu(ev, p) |Ix]I7,
(1= ) Ixl2, < [[(KCu (e P 70x < (1 4+ 0) 2.

Letting R equal to (KC,,(a, p)) /P ®, we obtain
(1 =0)lIxll < IRxlIg < (1 + ) [IxIIZ, -

Then, the probability that the RIP fails is approximately less or equal
S S
than (%) (1 + %) Pa.p,k (7).

With a number of projections given by: K Z Cislog(N/s) + Gs + G3

-20



COMPUTER SIMULATIONS

Sparse Signal Reconst. from Cauchy Random Proj. Noisy Case (a=1.2)
o Model: y = Rx +1; f(x) = % fooo o(t;0, o, y) exp~ >t dt.
@ n =400, k=100, s = 8.
@ lg— LL: fy-regularized coordinate-descent Myriad-based regression.

@ (1 — Ls: {1-regularized least squares.
bo— LL by — 4
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COMPUTER SIMULATIONS

Number of required measurements. Noiseless case.
@ Model: y = Rx.
@ n=300, s =6.
@ Reconstruction method: ¢y-regularized coordinate-descent
Myriad-based regression.
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CONCLUSIONS

@ A new RIP for SaS random matrices with 1 < o < 2 has been
formulated.

@ Useful applications such as methods of robust statistics,
reconstruction algorithms, among others.

@ As p — 0, less measurements are required for the RIP to hold with
high probability.

@ The restricted isometry constants (RIC) for this new RIP remain as
an open problem.



