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Conventional radar systems
I Rely on Line of Sight (LOS) communication between the target

and the radar head
I Treat multipath as interference

Radar operating in an urban environment
I LOS is no longer guaranteed.
I Lot of reflections from obstacles

Modern research interests on multipath
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Existing work

Existing work

Common assumptions (Krolik et al 2006, Chakraborty et al 2010,)

I Knowledge of the wall locations
I Knowledge of the wall reflectivities
I Knowledge of the number of targets
I Too specific geometric assumptions regarding the obstacles (eg.

narrow canals)

Detection based tracking (Barbosa et al 2008)

Radar
Measurements Estimates

TargetDetection Filtering algorithm



Assumptions and extensions

Assumptions and extensions

We derive the lower bound on the MSE under the following:
Common assumptions

I Target is a point scatterer
I Building locations are known
I Specular reflections at walls (reflective angle=incident angle)
I Higher order reflections are ignored
I Multiple transmitters and receivers
I Each receiver consists of a phase array antenna with L number of

elements
Extensions

I Reflectivity of Buildings modelled as random variables
I Each multipath is subject to a random phase shift which is

distributed according to a uniform distribution
I Tracking performed with pre-detection measurements
I No geometrical restrictions on the wall placement
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Modelling and notation

The state space at time tk could be partitioned into 3 components
I Target dynamics; xk = [xk ẋk yk ẏk ]′

I Wall and Target reflectivities; z = [ε ε1 · · · εB]′

I Collection of random phases that affect each path; ψk

Target reflectivity(ε) and building reflectivities (ε1 · · · εB) are
modeled as Gaussian random parameters



Modelling and notation

State evolves according to;

xk = Fkxk−1 + Gkwk , k = 1,2, . . . ,
z ∼ N(µz ,Pz)

ψk ∼ U(0:2π)P(xk )

Where P(xk ) denotes the number of multipaths at time k
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Modelling and notation

Measurement model

Target

and the steering vector

Sensor

 accounts for attentuation, delay, doppler 

Transmitter
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Modelling and notation

Measurement model Contd...
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Performance bounds

Posterior Cramer-rao lower bound (PCRB)

Let x be a vector of random parameters and y be a vector of
measured data.
Let g(y) be an estimate of x. The PCRB has the form

E [g(y)− x][g(y)− x]
′ ≥ J−1

Where J is the Information matrix

Recursive method proposed by Tichavsky et al (1998) to obtain
the PCRB
Challenging to find the various quantities needed to apply this
method for the setup we have used
How this was done is discussed next



Performance bounds

Performance bounds
Let X̄k = [X′k ψ′k ]′ The lower bound for MSE of estimators of X̄k and
Zk , denoted as (Jx̄ x̄

k )−1 and (Jzz
k )−1 could be found as;

Jx̄ x̄
k = H33

k − (H13
k )′[Jxx

k−1 + H11
k ]−1H13

k

Jx̄z
k = (H23

k )′ − (H13
k )′[Jxx

k−1 + H11
k ]−1Jxz

k−1

Jzz
k = Jzz

k−1 + H22
k − (Jxz

k−1)′[Jxx
k−1 + H11

k ]−1Jxz
k−1

where, with Qk = GkG′k ,

H11
k = diag(F′kQ−1

k Fk , [0]P(xk ))

H13
k = −diag(F′kQ−1

k , [0]P(xk ))

H22
k =

1
σ2 Re{E[∇zk h(·)′(∇zk h(·)∗)′]}

H23
k =

1
σ2 Re{E[∇zk h(·)′(∇x̄k h(·)∗)′]}

H33
k = diag(Q−1

k , [0]p(x)k
) +

1
σ2 Re{E[∇x̄k h(·)′(∇x̄k h(·)∗)′]}

with ∇ the gradient operator and p(xk) being the number of paths.
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Finding derivatives
Target

Sensor

βl

Lth wall

l + 1th wall

lth wall

(ξl, ζl) ≡ (γl + dl cos βl, χl + dl sinβl)
(γl, χl)

dl



Performance bounds

Finding derivatives Contd...

We need to evaluate partial derivatives with respect to x of
functions of the form:

f (d1(x), . . . ,dL(x), δ1(x), . . . , δS(x), z)

Where δs is the distance from the sthreference and reflection points in
the transmitter-target path

Derivative of f with respect to x could be calculated as;

∂f
∂x

=
L∑

i=0

∂f
∂di

∂di

∂x
+

S∑

j=0

∂f
∂δj

∂δj

∂x

How to calculate ∂di
∂x and ∂δj

∂x ???
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Finding derivatives Contd...
Target

Sensor

(ξl, ζl) ≡ (γl + dl cos βl, χl + dl sinβl)

tanφl =
χl+1+dl+1 sin βl+1−χl−dl sinβl
γl+1+dl+1 cos βl+1−γl−adl cosβl

Lth wall

l + 1th wall

lth wall
dl

φl
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Finding derivatives Contd...
Target

Sensor

Lth wall

dl

tanφL = y−χL−dL sin βL
x−γL−dL cos βL

φL
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lth wall
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Finding derivatives Contd...
Target

Sensor

Lth wall

θ =: f0(d1) = arctan
[
χ1+d1 sin β1−brx
γ1+d1 cosβ1−arx

]

tanφL = y−χL−dL sin βL
x−γL−dL cos βL

φL

l + 1th wall

lth wall

(ξl, ζl) ≡ (γl + dl cos βl, χl + dl sinβl)
dl

tanφl =
χl+1+dl+1 sin βl+1−χl−dl sinβl
γl+1+dl+1 cos βl+1−γl−adl cosβl

θ

φl
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Finding derivatives Contd...

Three equations obtained

dL = fL(x , y , θ)

dl = fl(dl+1, θ) for l = 1, . . . ,L− 1
θ = f0(d1)

Recursive relationship for the partial derivatives could be
expressed as; ∂dl

∂x for l = 1, . . . ,L as;

∂dl

∂x
= αl + ηl

∂θ

∂x
with αl = αl+1∂fl/∂dl+1 and ηl = ηl+1∂fl/∂dl+1 + ∂fl/∂θ where
αL = ∂fL/∂x and ηL = ∂fL/∂θ

Once α1 and η1 is known ∂θ
∂x could be obtained
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Illustration

αL ηL
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Illustration Contd...

αL ηL

αL−1 ηL−1
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Illustration Contd...

Now we can find α0 and η0 and thus ∂θ
∂x

α0 = α1
∂f0
∂d1

and η0 = η1
∂f0
∂d1

∂θ

∂x
=

α0

1− η0
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Illustration Contd...

∂dL
∂x

= αL + ηL ∂θ
∂x

∂dL−1
∂x

= αL−1 + ηL−1 ∂θ
∂x

... ∂θ
∂x

∂dl
∂x

= αl + ηl ∂θ
∂x

...
∂d1
∂x

= α1 + η1 ∂θ
∂x
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Performance bounds Contd...
Radar scene
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Performance bounds Contd...
Results (PCRB of positions estimates)
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Performance bounds Contd...
Results (PCRB of velocity estimates)
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Future Work

Future work

Implement a filter for the setup introduced
Multiple targets and possibly unknown number of targets
Unknown locations of the obstacles
Waveforms that would give better results
Resource scheduling
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