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1. FIR Estimation

The following estimation problems can be solved with FIR structures on
an averaging horizon of N past points

Smoothing Filtering Prediction

i 1 1

m = n— N +1

3 p <0 p=0 p =0
m n+p n n+p
e e e e

Ny p—
W horizon of N points Time

The FIR estimator can be designed in either the batch or iterative
Kalman-like forms.

Note! By changing a variable, one can also solve the problems of
predictive FIR filtering and smoothing FIR filtering

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.
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1.1. lIR (Kalman) and FIR (Kalman-like) Strategies
for State Estimation
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Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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1.2. Kalman and Most Recognized Kalman-like Filters

lIR FIR

1960-196

(Kalman) Linear, nonstationary, Gaussian

(Cox and others) Extended Kalman filter,
Nonlinear model

(Masreliez) Robust Kalman filter,
Non-Gaussian noise, heavy-tailed, outliers

(Evensen) Ensemble Kalman filter,
High dimensional systems

(Julier, Uhlmann) Unscented Kalman filter,

Highly nonlinear model (Kwon, Kim, Park) Receding horizon Kalman filter,

Iterative

(Lange) Fast Kalman filter,

Models with sparse matrices (Han, Kwon, Kim) Iterative FIR filter,

Deterministic model, white Gaussian noise

(Bonnabel) Invariant Extended Kalman filter,
Nonlinear symmetric systems (Shmaliy) Iterative Kalman-like estimator,

Time-invariant linear model

A part of the Estimation Theory Receding Horizon Control,
and Theory of Optimal Control Further development
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2. Time-Varying Batch Unbiased FIR Estimator
2.1. State-Space Signal Model

Consider a class of discrete time-varying linear state-space models
represented with the state and observation equations, respectively,

Xn — Anxn—l + Bﬂ-wﬂ ) (1)
Yn = GCpXp+Dpvy,, (2)

where x, ¢ RK yn € RM A ¢ REXK B ¢ RExP
C, ¢ RM*K and D, & RM>M

w, € RP and Vv, € RM have zero mean components, E{w,} =0,
E{v,} =0, E{w;vI} = 0, with arbitrary distributions and
known covariances

Qu(i.j) = E{wiw;},| Qu(i.j) = E{vivj}

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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2.2. Problem Formulation

Given (1) and (2), we would like to derive a
general p-shift Kalman-like FIR estimator for
filtering (p = 0),
prediction (p > 0), and
smoothing (p < 0)
of discrete time-varying state space models
with no requirements for noise and initial
conditions.

The estimator must be unbiased.
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2.3. Main ldea and the Model Transformation

2 points
(_)\ﬁ
n—1 n
. Xn = ApXp—1+Bpwy, ,
Start with the model Time
Vn — Cnxﬂ. -+ Dnvn .

Expand the model on an averaging horizon, from m= N—N +1tonas

N points Go to the expanded state space model
n—N+1 n
- ?
— .

2

Further employ the convolution and find the p-shift estimate at n+p in the minimum MSE sense,
thereby solve optimally the problems of filtering (p=0), prediction (p>0), and smoothing (p<0).

Y.S. Shmaliy, IEEE Signal Process. Letters, vol. 15, pp. 517-520, 2008. 8
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.
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2.4. Expanded State Space Model

Using the recursively computed forward-in-time solutions, represent the model,
(1) and (2), on a horizon of N past pointsfrommM=nN[] N+ ltonas

Xn — An.xn—l s Bﬂ-w'?l )
Vi = GpXpt Dpi
Xn,m == An,mxm 3 = Bn,m.wn,m .
Yn,m —= Cn;m.xm -+ Gn,-m.wn,m + DR,THV?I’.,’H’I .

: [ ! §
Xﬂ.?ﬂ- E R\FERNa Yﬂ,jrn E xRﬂIN, WTL’H‘I E %Ph. Vn,m E ﬁ}-]}ﬂINq

Y.S. Shmaliy, GPS-Based Optimal FIR Filtering of Clock Models, Nova Science Publ.: New York, 2009
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.



Xian = [xixz_l .xi}T._ Wiisa. = [WEWTI ...WE}T
e [ygyg—l Ygz]T- Vam = [nggl---vﬁ,]rp

An,m c %KN:){Ka Cn?m c _E_I}%ﬂ’fN}{K? Gn,m c _ER.MFNXPN’

Dﬂm E%ﬂfff\r}{ﬂfff\r B E%KN}':PN
’ ., '
Cn,m =Cn,mA—n}m Gn,m — cn mBn,m ,
Dn,m — dlag (Dn Dn 1 Dm) ,
N

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.

11




"
2.5. Batch Unbiased FIR Estimator

By the convolution, the estimate :;;HJ,M” of X, can be found if we assign

a K x MN gainmatrix H,, ,,,(p) and claim that

n.m (f-])Y-n,?n
n,m (P)(Cn,mxm - Gn,mwﬂ..,m
‘|_D?1,mv?1,m) :

Xﬂ+p|ﬂ H
H

This estimate will be unbiased if the following unbiasedness condition is
obeyed:

E{in—i—p|n} — E{XH—FP}

where E(X) means an average of X.

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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By the averaging, we have

E{iﬂ+p|ﬂ} — Hn:m (IJ)Cn,mea

where I:Iﬂ}_,”1 (p) s the unbiased gain matrix.

In turn, E{ Xn} can be substituted with the p-shift first vector row of (1) as
L m-+1
E{Xn+p} = Aﬂ_|_prgxm -
Equating E{X;+p|n} t0 E{Xnip} leads tothe unbiasedness constraint

Anmjpl,o — ﬁn,m (F) Cnm

The solution gives us the unbiased gain

ﬁ.nqﬂl(}}) :Anl—l—l (CT anm-)—lcT

n—+p,0 n,m 7,1

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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Theorem 1

Theorem 1: Given (1) and (2) with zero mean mutually
uncorrelated and independent w,, and v,, having arbitrary
distributions and known covariance functions. Then, filtering
(p =0), p-lag smoothing (p < 0), and p-step prediction (p >
0) are provided at n+ p using data taken from m =n— N +1
to n by the batch FIR UE as

i-ﬂ,+p|n = Hn,m-(p)Yn,m
= A 0(CrmCnm) 1 CrnYnm.

n.m

where C,, ,, 18 given by (12) and Y ,, ,,, 1s the data vector ().

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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3. Time-varying Kalman-like Estimator
Ignoring Noise and Initial Conditions

The time-varying batch unbiased FIR estimator established by

Theorem 1 has the following advantages against the Kalman filter:

» It ignores noise and the initial conditions, thus has strong engineering
features.

> Its estimate converges to the optimal one when N >> 1 or the mean square

Initial state dominates the noise matrices in the order of magnitudes.

and the following disadvantages:

» Its batch algorithm implies the computational problem, especially when N is

large.

The following theorem suggests a fast iterative Kalman-like form for this
estimator

15
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3.1. Theorem 2

Theorem 2: Given the batch FIR UE (theorem 1). Then its
iterative Kalman-like form 1s the following:

Kiapl = ArpXiap_1i-1 + A, X (p)FCl

x|y1 — CETJ(P)?_CHp—lu—l] ;

T Ty\—17—1
FI — [CI CI. 5 (AIFI—lAg ) } ; ( A§B|P|q p < 0 (Sl]lOOthi[lg)
Xotpls = AT;;DPC;HYMH ; A, p=20 (filtering)
Ti(p) =1 L = dicti
F, — A?leA?arqu 1(p) 113’—1 B p=1  (pre fc ?on)
P — (CE?RCS,m)_l _ k 1:1;[1 A p>1 (prediction).

where s = [—1 and an iterative variable [ ranges from max(m+
K, m+2,m+2—p) ton in order for P~ to be nonsingular and

AEJ{-I@ o and A}Tl'lﬁ to exist. The true estimate corresponds to
7 : 7
} = 7.

16
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.



"
3.2. Full-Horizon Kalman-Like Estimator

IS used to process at once all the data available

TABLE |
FuLL-HorizoN TV KALMAN-LIKE FIR UE ALGORITHM

Stage
Given: K,p,n2a a=max(K,2, 2 —p)
Set: Y.(p) by (L9)

P = (CZ_LGCa—l,D)_l

'

Fo-1= Ai—l,ﬂpﬂé—l

ia+p—1|n—] == Aé_Fp?jPCZ_l’DYﬂ—l,U
Update: Fi =[CLC, + (AuFa—1AL Y

- = =4
Xntpln = Aﬂ-l-j:'xn—l—p—lin—l 0 Aﬂ-l—an (p)FﬂCES
x[}’rﬂ» = CHTH(P)in—I—p—lln—l]

17
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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3.3. Noise Power Gain

The NPG K;, £ Ky (n,N.p) can be computed for the kth
state measured with noise having o3 as

Kp =

where the thinned K x N gain Hy, £ (H,, 1, (p))

I{k(ll) I{k(lk) I{k(lf{)
I{k(kl) —ﬁrk(kk} I{k(kK)
i I‘fk(;{l) I{k(Kﬁc) I{k(KK) i

. 18 composed

by K'th columns of I_I;.Lm (p) starting with the Ath one.

Y.S. Shmaliy, O. Ibarra-Manzano, IEEE Signal Process. Letters, vol. 18, no. 4, pp. 207-210, Apr. 2011

18
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3.4. Estimate Error Bound

Setting aside the rigorous error matrix, the estimate error bound (EB) can easily
be ascertained via the NPG matrix K, in the three-sigma sense as

Biiug) (1N, p) = .'3:1?;;[1';{39}(?1 , N, p) (30)

to characterize denoising in the v-to-g channel via measurement of the
kth state.

In what follows, we shall show that EB is an efficient measure of errors
In FIR and IIR estimators.

19
Y.S. Shmaliy, O. Ibarra-Manzano, IEEE Signal Process. Letters, vol. 18, no. 4, pp. 207-210, Apr. 2011



3.5. Example: Optimal vs. Unbiased FIR Estimates
10
202N —1)
nN) = NN+
-..% Unbiased Optimal

As can be seen, the optimal and unbiased estimates converge
with increasing N and become indistinguishable when N > 30.

Y.S. Shmaliy, IEEE Trans. UFFC, vol. 53, no. 5, pp. 862-870, May 2006.
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.
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4.1. Filtering of a Time-Varying Polynomial Model

Consider a two-state polynomial model

Xn — An.xn—l + Bﬂ-wﬂ )

Y = Cnxp+ Dpvy, ,

with By=1L.D, =1, G, = [1 0]‘ and

| T (lsbdy )T
e [3 0]

where d,, = 20 if 120 < n < 160 and d,, = 0 otherwise.

Allow 07 =10"% 02 =4x1072/s2, and o, = 50°. in poth the
model and the filters.
Provide Kalman and Kalman-like FIR filtering and compare the estimates.

21
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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4.1.1. Time-Varying (TV) and Time-Invariant (Tl) Filtering of
the First State a Two-State Polynomial Model

i
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4.1.2. Estimate Errors in the First State

First state

Estimate errors, in part of 10°
=

Tl Kalman

Tl Kalman-like

y |
0 20 40 60 80 100 120 140 160 180 200 220 240 260 2RO 300 320 340

Time

(b)

23
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4.1.3. Estimate Errors in the Second State

20
Second state N =54
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4.2. Filtering with Errors in Noise Covariances

Consider a two-state polynomial model

Xn — An.xn—l + Bﬂ-wﬂ )

Y = Cnxp+ Dpvy, ,

with B, =1, D, =1, C, = [1 0]‘ and

| I sy )T
Anlo 1 ]

where d,, = 20 1f 120 < n < 160 and d,, = 0 otherwise.

Because the system noise is often hard to describe exactly, allow errors in the

noise covariances as gf — ().25 % 10— against actual g% _ 10—4 and

053 =0.25 x 1075/ s againstactual 03 = 4 x 107°%/s*
Provide Kalman and Kalman-like FIR filtering and compare the estimates.

25
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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Filtering errors
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4.2.2. Estimate Errors in the TV Filtering of the Second State

1.0 TV filtering First state

0.5

Kalman (effect of errors in noise variances)

0.6

0.4 Kalman

Filtering errors
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4.3. Prediction of the Two-State Model

Consider a two-state polynomial modelwith B, = 1. D,, =1, C,, = [1 (_'J],

and L (1+dy)
L + Qn )T
with L1090 = ]_, Iog = 00'1/5 (T% — 10_6, {Tg = 10_4/52

and  dn = 20 from 150 to 152.

For the Kalman filter, allow errors in the initial states as
r10 = 2 and x99 = 0.03/s.

Provide prediction of the model behavior employing the Kalman and Kalman-
like FIR predictors. Organize the Kalman prediction as

p
Xn+pln — H An—l—p—l—l—i}_{mn .
1=1

28

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.



Prediction of the first state
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4.3.1. Prediction of a Distinct Model

Actual

Distinct model N=16

40 &0 80 100 120 140 160 180 200 220 240 260
Time

(a)

280

300

29



" J
4.3.2. Prediction with Error in the Model Description

30

Errors in the noise variances and initial conditions N=16

Prediction of the first state
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4.4. Filtering of a Gaussian Model with Outliers

Consider a two-state polynomial modelwith B,, =1, D,, =1, C,, = [1 0],
1 7
A=l 7]

with L1 = 1, Log = 001/5 (T% — 10_6, {T% = 10_4/52

and

and o2 = 0.0225. For the Kalman filter, increase o, and oo by the
factors of 2 and 3, respectively.

Induce outliers to measurement and provide estimation employing the Kalman
and Kalman-like FIR filters.

31
Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.
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Measurement of the first state

4.4.1. Measurement of a Gaussian Model with Quitliers
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Estimate errors
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4.4.3. Estimate Errors in the Second State
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Conclusions:

m The Kalman-like unbiased FIR estimator ignoring noise
and initial conditions Is a nice tool for near optimum
estimation and denoising. The estimator outperforms the
Kalman filter if

Noise and initial conditions are not known exactly.

Both the system and measurement noise components need to be
filtered out.

Models are measured in the non-Gaussian, heavy tailed, and
Gaussian with outliers noise environments.

Models have temporary uncertainties.
m The payment of about N times larger computational time

required by averaging will not be necessary in parallel
computing.
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