SCHOOL OF ENGINEERING CAMPUS IRAPUATO-SALAMANCA

A Kalman-like Algorithm with no Requirements for Noise and Initial Conditions

Yuriy S. Shmaliy, Guanajuato University shmaliy@ugto.mx

The 36th IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-2011), Prague, Czech Republic, May 22-27, 2011

Outline

<u>1. FIR Estimation</u>

- □ 1.1: IIR Kalman and FIR Kalman-like strategies for state estimation
- 1.2: Kalman and most recognized Kalman-like filters

2. Time-Varying Batch Unbiased FIR Estimator

- □ 2.1: State-space signal model
- 2.2: Problem formulation
- 2.3: Main idea and the model transformation
- □ 2.4: Extended state-space model
- 2.5: Batch unbiased FIR estimator. Theorem 1.
- <u>3. Time-varying Kalman-Like Estimator Ignoring Noise and Initial</u> <u>Conditions</u>
 - □ 3.1: Theorem 2.
 - 3.2: Full-horizon Kalman-like estimator
 - □ 3.3: Noise power gain
 - 3.4: Estimate error bound
 - □ 3.5: Example 1: Optimal vs. unbiased FIR estimates
- Applications
- Summary

1. FIR Estimation

The following estimation problems can be solved with FIR structures on an averaging horizon of N past points

The *FIR estimator* can be designed in either the *batch* or *iterative Kalman-like* forms.

Note! By changing a variable, one can also solve the problems of predictive FIR filtering and smoothing FIR filtering

1.1. IIR (Kalman) and FIR (Kalman-like) Strategies for State Estimation

1.2. Kalman and Most Recognized Kalman-like Filters

2. Time-Varying Batch Unbiased FIR Estimator 2.1. State-Space Signal Model

Consider a class of *discrete time-varying linear state-space models* represented with the state and observation equations, respectively,

$$\mathbf{x}_{n} = \mathbf{A}_{n}\mathbf{x}_{n-1} + \mathbf{B}_{n}\mathbf{w}_{n}, \qquad (1)$$
$$\mathbf{y}_{n} = \mathbf{C}_{n}\mathbf{x}_{n} + \mathbf{D}_{n}\mathbf{v}_{n}, \qquad (2)$$

where
$$\mathbf{x}_n \in \Re^K$$
, $\mathbf{y}_n \in \Re^M$, $\mathbf{A}_n \in \Re^{K \times K}$, $\mathbf{B}_n \in \Re^{K \times P}$,
 $\mathbf{C}_n \in \Re^{M \times K}$, and $\mathbf{D}_n \in \Re^{M \times M}$.
 $\mathbf{w}_n \in \Re^P$ and $\mathbf{v}_n \in \Re^M$ have zero mean components, $E\{\mathbf{w}_n\} = \mathbf{0}$,
 $E\{\mathbf{v}_n\} = \mathbf{0}$, $E\{\mathbf{w}_i\mathbf{v}_j^T\} = \mathbf{0}$, with arbitrary distributions and

known covariances

$$\mathbf{Q}_w(i,j) = E\{\mathbf{w}_i \mathbf{w}_j^T\}, \quad \mathbf{Q}_v(i,j) = E\{\mathbf{v}_i \mathbf{v}_j^T\}$$

2.2. Problem Formulation

Given (1) and (2), we would like to derive a general *p*-shift Kalman-like FIR estimator for filtering (p = 0), prediction (p > 0), and smoothing (p < 0)of discrete time-varying state space models with no requirements for *noise* and *initial* conditions. The estimator must be unbiased.

2.3. Main Idea and the Model Transformation

Start with the model

$$\mathbf{x}_n = \mathbf{A}_n \mathbf{x}_{n-1} + \mathbf{B}_n \mathbf{w}_n,$$

$$\mathbf{y}_n = \mathbf{C}_n \mathbf{x}_n + \mathbf{D}_n \mathbf{v}_n,$$

2 points

Expand the model on an *averaging horizon*, from m = n - N + 1 to *n* as

Further employ the *convolution* and find the *p*-shift estimate at n+p in the minimum MSE sense, thereby solve optimally the problems of *filtering* (*p*=0), *prediction* (*p*>0), and *smoothing* (*p*<0).

2.4. Expanded State Space Model

Using the recursively computed *forward-in-time solutions*, represent the model, (1) and (2), on a horizon of N past points from m = n N + 1 to n as

$$\mathbf{x}_{n} = \mathbf{A}_{n}\mathbf{x}_{n-1} + \mathbf{B}_{n}\mathbf{w}_{n},$$

$$\mathbf{y}_{n} = \mathbf{C}_{n}\mathbf{x}_{n} + \mathbf{D}_{n}\mathbf{v}_{n},$$

$$\mathbf{X}_{n,m} = \mathbf{A}_{n,m}\mathbf{x}_{m} + \mathbf{B}_{n,m}\mathbf{W}_{n,m},$$

$$\mathbf{Y}_{n,m} = \mathbf{C}_{n,m}\mathbf{x}_{m} + \mathbf{G}_{n,m}\mathbf{W}_{n,m} + \mathbf{D}_{n,m}\mathbf{V}_{n,m},$$

$$\mathbf{X}_{n,m} \in \Re^{KN}, \ \mathbf{Y}_{n,m} \in \Re^{MN}, \ \mathbf{W}_{n,m} \in \Re^{PN}, \ \mathbf{V}_{n,m} \in \Re^{MN},$$

Y.S. Shmaliy, *GPS-Based Optimal FIR Filtering of Clock Models*, Nova Science Publ.: New York, 2009 Y.S. Shmaliy, *IEEE Trans. Signal Process.*, vol. 58, no. 6, pp. 3086-3096, 2010.

$$\begin{aligned} \mathbf{X}_{n,m} &= \begin{bmatrix} \mathbf{x}_n^T \ \mathbf{x}_{n-1}^T \ \dots \ \mathbf{x}_m^T \end{bmatrix}^T, \\ \mathbf{Y}_{n,m} &= \begin{bmatrix} \mathbf{y}_n^T \ \mathbf{y}_{n-1}^T \ \dots \ \mathbf{y}_m^T \end{bmatrix}^T, \end{aligned} \\ \begin{aligned} \mathbf{W}_{n,m} &= \begin{bmatrix} \mathbf{w}_n^T \ \mathbf{w}_{n-1}^T \ \dots \ \mathbf{w}_m^T \end{bmatrix}^T, \end{aligned}$$

 $\mathbf{A}_{n,m} \in \Re^{KN \times K}, \mathbf{C}_{n,m} \in \Re^{MN \times K}, \mathbf{G}_{n,m} \in \Re^{MN \times PN},$

$$\mathbf{D}_{n,m} \in \Re^{MN \times MN} \qquad \mathbf{B}_{n,m} \in \Re^{KN \times PN}$$

$$\mathbf{C}_{n,m} = \bar{\mathbf{C}}_{n,m} \mathbf{A}_{n,m} \quad \mathbf{G}_{n,m} = \bar{\mathbf{C}}_{n,m} \mathbf{B}_{n,m},$$

$$\mathbf{D}_{n,m} = \operatorname{diag}\left(\underbrace{\mathbf{D}_n \ \mathbf{D}_{n-1} \ \dots \ \mathbf{D}_m}_{N}\right),$$

$$\bar{\mathbf{C}}_{n,m} = \operatorname{diag}\left(\underbrace{\mathbf{C}_n \ \mathbf{C}_{n-1} \ \dots \ \mathbf{C}_m}_N\right),$$

$$\mathbf{A}_{n,m} = \left[\mathcal{A}_{n,0}^{m+1^{T}} \mathcal{A}_{n,1}^{m+1^{T}} \dots \mathbf{A}_{m+1}^{T} \mathbf{I} \right]^{T},$$
$$\mathbf{A}_{n,m}^{r-g} = \prod_{i=h}^{g} \mathbf{A}_{r-i},$$
$$\mathbf{Q}_{n,h}^{r-g} = \prod_{i=h}^{g} \mathbf{A}_{r-i},$$

$$\mathbf{B}_{n,m} = \begin{bmatrix} \mathbf{B}_n & \mathbf{A}_n \mathbf{B}_{n-1} & \dots & \mathcal{A}_{n,0}^{m+2} \mathbf{B}_{m+1} & \mathcal{A}_{n,0}^{m+1} \mathbf{B}_m \\ \mathbf{0} & \mathbf{B}_{n-1} & \dots & \mathcal{A}_{n,1}^{m+2} \mathbf{B}_{m+2} & \mathcal{A}_{n,1}^{m+1} \mathbf{B}_{m+1} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{B}_{m+1} & \mathbf{A}_{m+1} \mathbf{B}_m \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{B}_m \end{bmatrix},$$

2.5. Batch Unbiased FIR Estimator

By the convolution, the estimate $\tilde{\mathbf{x}}_{n+p|n}$ of \mathbf{x}_n can be found if we assign a $K \times MN$ gain matrix $\mathbf{H}_{n,m}(p)$ and claim that

$$\begin{aligned} \tilde{\mathbf{x}}_{n+p|n} &= \mathbf{H}_{n,m}(p) \mathbf{Y}_{n,m} \\ &= \mathbf{H}_{n,m}(p) (\mathbf{C}_{n,m} \mathbf{x}_m + \mathbf{G}_{n,m} \mathbf{W}_{n,m} \\ &+ \mathbf{D}_{n,m} \mathbf{V}_{n,m}) \,. \end{aligned}$$

This estimate will be unbiased if the following *unbiasedness condition* is obeyed:

$$E\{\tilde{\mathbf{x}}_{n+p|n}\} = E\{\mathbf{x}_{n+p}\}$$

where E(x) means an average of x.

By the averaging, we have

$$E\{\tilde{\mathbf{x}}_{n+p|n}\} = \bar{\mathbf{H}}_{n,m}(p)\mathbf{C}_{n,m}\mathbf{x}_m,$$

where $\mathbf{H}_{n,m}(p)$ is the unbiased gain matrix.

In turn, $E\{\mathbf{x}_n\}$ can be substituted with the *p*-shift first vector row of (1) as

$$E\{\mathbf{x}_{n+p}\} = \mathcal{A}_{n+p,0}^{m+1}\mathbf{x}_m \,.$$

Equating $E\{\tilde{\mathbf{x}}_{n+p|n}\}$ to $E\{\mathbf{x}_{n+p}\}$ leads to the *unbiasedness constraint*

$$\mathcal{A}_{n+p,0}^{m+1} = \bar{\mathbf{H}}_{n,m}(p)\mathbf{C}_{n,m}$$

The solution gives us the unbiased gain

$$\bar{\mathbf{H}}_{n,m}(p) = \mathcal{A}_{n+p,0}^{m+1} (\mathbf{C}_{n,m}^T \mathbf{C}_{n,m})^{-1} \mathbf{C}_{n,m}^T$$

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465-2473, 2011.

Theorem 1

Theorem 1: Given (1) and (2) with zero mean mutually uncorrelated and independent \mathbf{w}_n and \mathbf{v}_n having arbitrary distributions and known covariance functions. Then, filtering (p = 0), p-lag smoothing (p < 0), and p-step prediction (p > 0) are provided at n+p using data taken from m = n-N+1to n by the batch FIR UE as

$$\begin{split} \bar{\mathbf{x}}_{n+p|n} &= \bar{\mathbf{H}}_{n,m}(p) \mathbf{Y}_{n,m} \\ &= \mathcal{A}_{n+p,0}^{m+1} (\mathbf{C}_{n,m}^T \mathbf{C}_{n,m})^{-1} \mathbf{C}_{n,m}^T \mathbf{Y}_{n,m} \,, \end{split}$$

where $C_{n,m}$ is given by (12) and $Y_{n,m}$ is the data vector (8).

3. Time-varying Kalman-like Estimator Ignoring Noise and Initial Conditions

The time-varying batch unbiased FIR estimator established by Theorem 1 has the following advantages against the Kalman filter:

It ignores noise and the initial conditions, thus has strong engineering features.

> Its estimate converges to the optimal one when N >> 1 or the mean square initial state dominates the noise matrices in the order of magnitudes.

and the following disadvantages:

> Its batch algorithm implies the *computational problem*, especially when N is large.

The following theorem suggests a fast iterative Kalman-like form for this estimator

3.1. Theorem 2

Theorem 2: Given the batch FIR UE (theorem 1). Then its iterative Kalman-like form is the following:

$$\bar{\mathbf{x}}_{l+p|l} = \mathbf{A}_{l+p} \bar{\mathbf{x}}_{l+p-1|l-1} + \mathbf{A}_{l+p} \boldsymbol{\Upsilon}_{l}^{-1}(p) \mathbf{F}_{l} \mathbf{C}_{l}^{T}$$

$$\times [\mathbf{y}_{l} - \mathbf{C}_{l} \boldsymbol{\Upsilon}_{l}(p) \bar{\mathbf{x}}_{l+p-1|l-1}],$$

$$\begin{split} \mathbf{F}_{l} &= [\mathbf{C}_{l}^{T}\mathbf{C}_{l} + (\mathbf{A}_{l}\mathbf{F}_{l-1}\mathbf{A}_{l}^{T})^{-1}]^{-1}, \\ \bar{\mathbf{x}}_{s+p|s} &= \mathcal{A}_{s+p,0}^{m+1}\mathbf{P}\mathbf{C}_{s,m}^{T}\mathbf{Y}_{s,m}, \\ \mathbf{F}_{s} &= \mathcal{A}_{s,0}^{m+1}\mathbf{P}\mathcal{A}_{s,0}^{m+1^{T}}, \\ \mathbf{P} &= (\mathbf{C}_{s,m}^{T}\mathbf{C}_{s,m})^{-1}, \end{split} \mathbf{Y}_{l}(p) = \begin{cases} \mathcal{A}_{l,0}^{l-|p|}, & p < 0 & \text{(smoothing)} \\ \mathbf{A}_{l}, & p = 0 & \text{(filtering)} \\ \mathbf{I}, & p = 1 & \text{(prediction)} \\ \prod_{i=1}^{p-1}\mathbf{A}_{l-i}^{-1}, & p > 1 & \text{(prediction)}. \end{cases} \end{split}$$

where s = l-1 and an iterative variable l ranges from $\max(m + K, m+2, m+2-p)$ to n in order for \mathbf{P}^{-1} to be nonsingular and $\mathcal{A}_{l-1+p,0}^{m+1}$ and $\mathcal{A}_{l-1,0}^{m+1}$ to exist. The true estimate corresponds to l = n.

3.2. Full-Horizon Kalman-Like Estimator

is used to process at once all the data available

TABLE I FULL-HORIZON TV KALMAN-LIKE FIR UE ALGORITHM

C			
N 1	\mathbf{n}	ana	
	a	20	
		0-	

Given:	$K, p, n \ge \alpha, \alpha = \max(K, 2, 2 - p)$
Set:	$\Upsilon_{\alpha}(p)$ by (I.9)
	$\mathbf{P} = (\mathbf{C}_{\alpha-1,0}^T \mathbf{C}_{\alpha-1,0})^{-1}$
	$\mathbf{F}_{\alpha-1} = \mathcal{A}_{\alpha-1,0}^1 \mathbf{P} \mathcal{A}_{\alpha-1}^{1^T}$
	$\bar{\mathbf{x}}_{\alpha+p-1 \alpha-1} = \mathcal{A}_{\alpha+p,1}^{1} \mathbf{P} \mathbf{C}_{\alpha-1,0}^{T} \mathbf{Y}_{\alpha-1,0}$
Update:	$\mathbf{F}_n = [\mathbf{C}_n^T \mathbf{C}_n + (\mathbf{A}_n \mathbf{F}_{n-1} \mathbf{A}_n^T)^{-1}]^{-1}$
	$\bar{\mathbf{x}}_{n+p n} = \mathbf{A}_{n+p} \bar{\mathbf{x}}_{n+p-1 n-1} + \mathbf{A}_{n+p} \boldsymbol{\Upsilon}_n^{-1}(p) \mathbf{F}_n \mathbf{C}_n^T$
	$\times [\mathbf{y}_n - \mathbf{C}_n \boldsymbol{\Upsilon}_n(p) \bar{\mathbf{x}}_{n+p-1 n-1}]$

3.3. Noise Power Gain

The NPG $\mathbf{K}_k \triangleq \mathbf{K}_k(n, N, p)$ can be computed for the *k*th state measured with noise having σ_k^2 as

$$\mathbf{K}_{k} = \mathcal{H}_{k}\mathcal{H}_{k}^{T} = \begin{bmatrix} K_{k(11)} & \dots & K_{k(1k)} & \dots & K_{k(1K)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ K_{k(k1)} & \dots & K_{k(kk)} & \dots & K_{k(kK)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ K_{k(K1)} & \dots & K_{k(Kk)} & \dots & K_{k(KK)} \end{bmatrix}$$

where the thinned $K \times N$ gain $\mathcal{H}_k \triangleq (\bar{\mathbf{H}}_{n,m}(p))_k$ is composed by Kth columns of $\bar{\mathbf{H}}_{n,m}(p)$ starting with the kth one.

3.4. Estimate Error Bound

Setting aside the rigorous error matrix, the estimate error bound (EB) can easily be ascertained via the NPG matrix \mathbf{K}_k in the three-sigma sense as

$$\beta_{k(vg)}(n, N, p) = 3\sigma_k K_{k(vg)}^{1/2}(n, N, p)$$
(30)

to characterize denoising in the *v*-to-*g* channel via measurement of the *k*th state.

In what follows, we shall show that EB is an *efficient measure of errors* in FIR and IIR estimators.

3.5. Example: Optimal vs. Unbiased FIR Estimates

4.1. Filtering of a Time-Varying Polynomial Model

Consider a two-state polynomial model

$$\mathbf{x}_n = \mathbf{A}_n \mathbf{x}_{n-1} + \mathbf{B}_n \mathbf{w}_n ,$$

$$\mathbf{y}_n = \mathbf{C}_n \mathbf{x}_n + \mathbf{D}_n \mathbf{v}_n ,$$

with $\mathbf{B}_n = \mathbf{I}, \mathbf{D}_n = \mathbf{I}, \mathbf{C}_n = [1 \ 0]$, and

$$\mathbf{A}_n = \begin{bmatrix} 1 & (1+d_n)\tau \\ 0 & 1 \end{bmatrix},$$

where $d_n = 20$ if $120 \le n \le 160$ and $d_n = 0$ otherwise. Allow $\sigma_1^2 = 10^{-4}$, $\sigma_2^2 = 4 \times 10^{-2}/\text{s}^2$, and $\sigma_v^2 = 50^2$. In both the model and the filters.

Provide Kalman and Kalman-like FIR filtering and compare the estimates.

4.1.1. Time-Varying (TV) and Time-Invariant (TI) Filtering of the First State a Two-State Polynomial Model

4.1.2. Estimate Errors in the First State

4.1.3. Estimate Errors in the Second State

4.2. Filtering with Errors in Noise Covariances

Consider a two-state polynomial model

$$\mathbf{x}_n = \mathbf{A}_n \mathbf{x}_{n-1} + \mathbf{B}_n \mathbf{w}_n ,$$

$$\mathbf{y}_n = \mathbf{C}_n \mathbf{x}_n + \mathbf{D}_n \mathbf{v}_n ,$$

with $\mathbf{B}_n = \mathbf{I}, \mathbf{D}_n = \mathbf{I}, \mathbf{C}_n = [1 \ 0]$, and

$$\mathbf{A}_n = \begin{bmatrix} 1 & (1+d_n)\tau \\ 0 & 1 \end{bmatrix},$$

where $d_n = 20$ if $120 \le n \le 160$ and $d_n = 0$ otherwise.

Because the system noise is often hard to describe exactly, allow errors in the noise covariances as $\sigma_1^2 = 0.25 \times 10^{-4}$ against actual $\sigma_1^2 = 10^{-4}$ and $\sigma_2^2 = 0.25 \times 10^{-6}/\text{ s}$ against actual $\sigma_2^2 = 4 \times 10^{-6}/\text{s}^2$.

Provide Kalman and Kalman-like FIR filtering and compare the estimates.

4.2.1. Estimate Errors in TI Filtering of the First State

4.2.2. Estimate Errors in the TV Filtering of the Second State

4.3. Prediction of the Two-State Model

Consider a two-state polynomial model with $\mathbf{B}_n = \mathbf{I}, \mathbf{D}_n = \mathbf{I}, \mathbf{C}_n = \begin{bmatrix} 1 & 0 \end{bmatrix}$, and

$$\mathbf{A}_n = \begin{bmatrix} 1 & (1+d_n)\tau \\ 0 & 1 \end{bmatrix},$$

with $x_{10} = 1$, $x_{20} = 0.01/s$, $\sigma_1^2 = 10^{-6}$, $\sigma_2^2 = 10^{-4}/s^2$ and $d_n = 20$ from 150 to 152.

For the Kalman filter, allow errors in the initial states as $x_{10} = 2$ and $x_{20} = 0.03/s$.

Provide prediction of the model behavior employing the Kalman and Kalmanlike FIR predictors. Organize the Kalman prediction as

$$\tilde{\mathbf{x}}_{n+p|n} = \prod_{i=1}^{p} \mathbf{A}_{n+p+1-i} \bar{\mathbf{x}}_{n|n}.$$

4.3.1. Prediction of a Distinct Model

4.3.2. Prediction with Error in the Model Description

4.4. Filtering of a Gaussian Model with Outliers

Consider a two-state polynomial model with $\mathbf{B}_n = \mathbf{I}, \mathbf{D}_n = \mathbf{I}, \mathbf{C}_n = [1 \ 0],$ and

$$\mathbf{A}_n = \left[\begin{array}{cc} 1 & \tau \\ 0 & 1 \end{array} \right]$$

with $x_{10} = 1$, $x_{20} = 0.01/s$, $\sigma_1^2 = 10^{-6}$, $\sigma_2^2 = 10^{-4}/s^2$

and $\sigma_v^2 = 0.0225$. For the Kalman filter, increase σ_1 and σ_2 by the factors of 2 and 3, respectively.

Induce outliers to measurement and provide estimation employing the Kalman and Kalman-like FIR filters.

4.4.1. Measurement of a Gaussian Model with Outliers

4.4.2. Estimate Errors in the First State

33

4.4.3. Estimate Errors in the Second State

Conclusions:

- The Kalman-like unbiased FIR estimator ignoring noise and initial conditions is a nice tool for near optimum estimation and denoising. The estimator outperforms the Kalman filter if
 - Noise and initial conditions are not known exactly.
 - Both the system and measurement noise components need to be filtered out.
 - Models are measured in the non-Gaussian, heavy tailed, and Gaussian with outliers noise environments.
 - □ Models have *temporary uncertainties*.
- The payment of about N times larger computational time required by averaging will not be necessary in parallel computing.