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1. FIR Estimation1. FIR Estimation

NoteNote! By changing a variable, one can also solve the problems of ! By changing a variable, one can also solve the problems of 
predictive FIR filtering predictive FIR filtering and and smoothing FIR filteringsmoothing FIR filtering

The following The following estimation problems estimation problems can be solved with can be solved with FIR structures FIR structures on on 
an averaging horizon of an averaging horizon of NN past pointspast points

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.

The The FIR estimator FIR estimator can be designed in either the can be designed in either the batchbatch or or iterative iterative 
KalmanKalman--like like forms.forms.
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1.1. IIR (Kalman) and FIR (Kalman1.1. IIR (Kalman) and FIR (Kalman--like) Strategies like) Strategies 
for State Estimationfor State Estimation

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.



1.2. Kalman and Most Recognized Kalman1.2. Kalman and Most Recognized Kalman--like Filterslike Filters
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IIRIIR FIR FIR 
((KalmanKalman) Linear, nonstationary, Gaussian ) Linear, nonstationary, Gaussian 

2010

1960–1961

A part of the Estimation Theory A part of the Estimation Theory 
and Theory of Optimal Controland Theory of Optimal Control

Receding Horizon Control, Receding Horizon Control, 
Further developmentFurther development

1964((Cox and othersCox and others) Extended Kalman filter,) Extended Kalman filter,
Nonlinear model Nonlinear model 

((Julier, UhlmannJulier, Uhlmann) Unscented Kalman filter,) Unscented Kalman filter,
Highly nonlinear model Highly nonlinear model 

1997

2009

((BonnabelBonnabel) Invariant Extended Kalman filter,) Invariant Extended Kalman filter,
Nonlinear symmetric systems Nonlinear symmetric systems 

((EvensenEvensen) Ensemble Kalman filter,) Ensemble Kalman filter,
High dimensional systemsHigh dimensional systems

1994

2005

((LangeLange) Fast Kalman filter,) Fast Kalman filter,
Models with sparse matrices Models with sparse matrices 

((MasreliezMasreliez) Robust Kalman filter,) Robust Kalman filter,
NonNon--Gaussian noise, heavyGaussian noise, heavy--tailed, outliers tailed, outliers 

1975

1999
((Kwon, Kim, ParkKwon, Kim, Park) Receding horizon Kalman filter,) Receding horizon Kalman filter,
IterativeIterative

2002 ((Han, Kwon, KimHan, Kwon, Kim) Iterative FIR filter,) Iterative FIR filter,
Deterministic model, white Gaussian noiseDeterministic model, white Gaussian noise

((ShmaliyShmaliy) Iterative Kalman) Iterative Kalman--like estimator,like estimator,
TimeTime--invariant linear modelinvariant linear model



2. Time2. Time--Varying Batch Unbiased FIR EstimatorVarying Batch Unbiased FIR Estimator
2.1. State2.1. State--Space Signal ModelSpace Signal Model

Consider a class of Consider a class of discrete timediscrete time--varying linear statevarying linear state--space models space models 
represented with the state and observation equations, respectiverepresented with the state and observation equations, respectively, ly, 
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wherewhere

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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Given (1) and (2), we would like to derive a Given (1) and (2), we would like to derive a 
general general pp--shift Kalmanshift Kalman--like FIR estimator forlike FIR estimator for

filteringfiltering ((pp = 0), = 0), 
prediction prediction ((pp > 0), and > 0), and 

smoothingsmoothing ((pp < 0) < 0) 
of of discrete timediscrete time--varying state space models varying state space models 

with no requirements for with no requirements for noisenoise and and initial initial 
conditionsconditions. . 

The estimator must be unbiased.The estimator must be unbiased.

2.2. Problem Formulation2.2. Problem Formulation
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2.3. Main Idea and the Model Transformation2.3. Main Idea and the Model Transformation

Start with the modelStart with the model

Expand the model on an Expand the model on an averaging horizonaveraging horizon, from  , from  m = n – N +1 to to n asas

Further employ the Further employ the convolutionconvolution and find the and find the pp--shift estimate at shift estimate at n+pn+p in the minimum MSE sense, in the minimum MSE sense, 

thereby solve optimally the problems of thereby solve optimally the problems of filteringfiltering ((pp=0), =0), predictionprediction ((pp>0), and >0), and smoothingsmoothing ((pp<0).<0).

?

?

Go to the Go to the expanded state space modelexpanded state space model

Y.S. Shmaliy, IEEE Signal Process. Letters, vol. 15, pp. 517-520, 2008.

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.
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2.4. Expanded State Space Model2.4. Expanded State Space Model

Using the recursively computed Using the recursively computed forwardforward--inin--time solutionstime solutions, represent the model, , represent the model, 

(1) and (2), on a horizon of (1) and (2), on a horizon of N past points from past points from m = n � N + 1 to to n asas

Y.S. Shmaliy, GPS-Based Optimal FIR Filtering of Clock Models, Nova Science Publ.: New York, 2009

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.
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Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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2.5. Batch Unbiased FIR Estimator2.5. Batch Unbiased FIR Estimator

By the convolution, the estimate                     of         By the convolution, the estimate                     of         can be found if we assign can be found if we assign 
a                        gain matrix                    and claia                        gain matrix                    and claim that   m that   

This estimate will be unbiased if the following This estimate will be unbiased if the following unbiasedness condition unbiasedness condition is is 
obeyed: obeyed: 

where where E(x) means an average of means an average of x..

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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By the averaging, we haveBy the averaging, we have

where                      is the unbiased gain matrix. where                      is the unbiased gain matrix. 

In turn,                can be substituted with the In turn,                can be substituted with the pp--shift first vector row of (1) asshift first vector row of (1) as

Equating                         to                      leads tEquating                         to                      leads to the o the unbiasedness constraintunbiasedness constraint

The solution gives us the The solution gives us the unbiased gainunbiased gain

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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Theorem 1Theorem 1

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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3. Time3. Time--varying Kalmanvarying Kalman--like Estimator like Estimator 
Ignoring Noise and Initial ConditionsIgnoring Noise and Initial Conditions

The timeThe time--varying batch unbiased FIR estimator established by varying batch unbiased FIR estimator established by 
Theorem 1 has the following Theorem 1 has the following advantagesadvantages against the Kalman filter:against the Kalman filter:

�� It It ignores noise and the initial conditionsignores noise and the initial conditions, thus has strong engineering , thus has strong engineering 
features.features.

�� Its estimate Its estimate converges to the optimal converges to the optimal one when one when NN >> 1 or the mean square >> 1 or the mean square 
initial state dominates the noise matrices in the order of magniinitial state dominates the noise matrices in the order of magnitudes.tudes.

and the following and the following disadvantagesdisadvantages::

�� Its batch algorithm implies the Its batch algorithm implies the computational problemcomputational problem, especially when , especially when NN is is 
large.large.

The following theorem suggests a fast iterative KalmanThe following theorem suggests a fast iterative Kalman--like form for this like form for this 
estimatorestimator
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3.1. Theorem 23.1. Theorem 2

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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3.2. Full3.2. Full--Horizon KalmanHorizon Kalman--Like EstimatorLike Estimator
is used to process at once all the data availableis used to process at once all the data available

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.
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3.3. Noise Power Gain3.3. Noise Power Gain

Y.S. Shmaliy, O. Ibarra-Manzano, IEEE  Signal Process. Letters, vol. 18, no. 4, pp. 207-210, Apr. 2011
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3.4. Estimate Error Bound3.4. Estimate Error Bound
Setting aside the rigorous error matrix, the estimate Setting aside the rigorous error matrix, the estimate error bound error bound (EB) can easily (EB) can easily 
be ascertained via the NPG matrix be ascertained via the NPG matrix KKkk in the in the threethree--sigma sense sigma sense as as 

to characterize denoising in the to characterize denoising in the vv--toto--gg channel via measurement of the channel via measurement of the 
kkth state. th state. 

In what follows, we shall show that EB is an In what follows, we shall show that EB is an efficient measure of errors efficient measure of errors 
in FIR and IIR estimators.in FIR and IIR estimators.

Y.S. Shmaliy, O. Ibarra-Manzano, IEEE  Signal Process. Letters, vol. 18, no. 4, pp. 207-210, Apr. 2011



20Y.S. Shmaliy, IEEE Trans. UFFC, vol. 53, no. 5, pp. 862-870, May 2006.

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3086-3096, 2010.

3.5. Example: Optimal vs. Unbiased FIR Estimates3.5. Example: Optimal vs. Unbiased FIR Estimates



4.1. Filtering of a Time4.1. Filtering of a Time--Varying Polynomial ModelVarying Polynomial Model
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Consider a twoConsider a two--state polynomial model state polynomial model 

Allow                                                           Allow                                                           in both the in both the 
model and the filters. model and the filters. 
Provide Kalman and KalmanProvide Kalman and Kalman--like FIR filtering and compare the estimates.like FIR filtering and compare the estimates.

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.



4.1.1. Time4.1.1. Time--Varying (TV) and TimeVarying (TV) and Time--Invariant (TI) Filtering of Invariant (TI) Filtering of 
the First State a Twothe First State a Two--State Polynomial ModelState Polynomial Model
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4.1.2. Estimate Errors in the First State4.1.2. Estimate Errors in the First State
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4.1.3. Estimate Errors in the Second State4.1.3. Estimate Errors in the Second State



4.2. Filtering with Errors in Noise Covariances4.2. Filtering with Errors in Noise Covariances
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Consider a twoConsider a two--state polynomial model state polynomial model 

Because the system noise is often hard to describe exactly, alloBecause the system noise is often hard to describe exactly, allow errors in the w errors in the 
noise covariances as                                     againstnoise covariances as                                     against actual                           andactual                           and

against actual         against actual         .               ..               .

Provide Kalman and KalmanProvide Kalman and Kalman--like FIR filtering and compare the estimates.like FIR filtering and compare the estimates.

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.



4.2.1. Estimate Errors in TI Filtering of the First State4.2.1. Estimate Errors in TI Filtering of the First State
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4.2.2. Estimate Errors in the TV Filtering of the Second State4.2.2. Estimate Errors in the TV Filtering of the Second State
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4.3. Prediction of the Two4.3. Prediction of the Two--State ModelState Model
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Consider a twoConsider a two--state polynomial model with state polynomial model with 

Provide prediction of the model behavior employing the Kalman anProvide prediction of the model behavior employing the Kalman and Kalmand Kalman--
like FIR predictors. Organize the Kalman prediction aslike FIR predictors. Organize the Kalman prediction as

For the Kalman filter, allow errors in the initial states asFor the Kalman filter, allow errors in the initial states as

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.



4.3.1. Prediction of a Distinct Model4.3.1. Prediction of a Distinct Model
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4.3.2. Prediction with Error in the Model Description4.3.2. Prediction with Error in the Model Description

30



4.4. Filtering of a Gaussian Model with Outliers4.4. Filtering of a Gaussian Model with Outliers
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Consider a twoConsider a two--state polynomial model with state polynomial model with 

Induce outliers to measurement and provide estimation employing Induce outliers to measurement and provide estimation employing the Kalman the Kalman 
and Kalmanand Kalman--like FIR filters.like FIR filters.

and                              For the Kalman filter, increaseand                              For the Kalman filter, increase and          by the and          by the 
factors of 2 and 3, respectively. factors of 2 and 3, respectively. 

Y.S. Shmaliy, IEEE Trans. Signal Process., vol. 59, no. 6,  pp. 2465-2473, 2011.



4.4.1. Measurement of a Gaussian Model with Outliers4.4.1. Measurement of a Gaussian Model with Outliers
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4.4.2. Estimate Errors in the First State4.4.2. Estimate Errors in the First State
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4.4.3. Estimate Errors in the Second State4.4.3. Estimate Errors in the Second State
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Conclusions:Conclusions:

�� The KalmanThe Kalman--like unbiased FIR estimator like unbiased FIR estimator ignoring noise ignoring noise 
and initial conditionsand initial conditions is a nice tool for near optimum  is a nice tool for near optimum  
estimation and denoising. The estimator outperforms the estimation and denoising. The estimator outperforms the 
Kalman filter Kalman filter ifif
�� Noise and initial conditions are not known exactlyNoise and initial conditions are not known exactly..
�� Both the Both the system and measurement noise components need to be system and measurement noise components need to be 

filtered outfiltered out..
�� Models are measured in the Models are measured in the nonnon--GaussianGaussian, , heavy tailedheavy tailed, and , and 

Gaussian with outliers Gaussian with outliers noise environments. noise environments. 
�� Models have Models have temporary uncertaintiestemporary uncertainties..

�� The payment of about The payment of about NN times larger computational timetimes larger computational time
required by averaging will not be necessary in parallel required by averaging will not be necessary in parallel 
computing.computing.
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