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Signal Model and Problem Statement

Scenario: multiuser downlink, by transmit beamforming:

Transmitter

User 1
User 2

User 3

h1
h2

h3

h̄1 6= h1

h̄3 6= h3

Goal: beamforming design that is ‘robust’ against the imperfect

channel state information (CSI) at the transmitter.
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Signal Model and Problem Statement (cont’)

• The transmitter has Nt antennas; there are K single-antenna

users.

• Let hi ∈ C
Nt be user i’s channel vector, and wi ∈ C

Nt be user i’s

beamformer, for i = 1, . . . , K.

• The SINR of user i:

SINRi =
|hH

i wi|2
∑K

k 6=i |hH
i wk|2 + σ2

i

,

where σ2
i > 0 is the noise power of user i.
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Signal Model and Problem Statement (cont’)

• A design formulation with perfect CSI:

min
wi∈C

Nt ,
i=1,...,K

K
∑

i=1

‖wi‖2 (1a)

s.t.
|hH

i wi|2
∑K

k 6=i
|hH

i wk|2 + σ2
i

≥ γi, i = 1, . . . ,K, (1b)

where γi > 0 stands for the preset target SINR value of user i.

• More than one way to solve problem (1) [Farrokhi99,Bengtsson01]:

– uplink-downlink duality

– semidefinite relaxation (SDR)

– second-order cone program (SOCP) reformulation

[Farrokhi99] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and power control for cellular wireless

systems,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1437-1450, Oct. 1999.

[Bengtsson01] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamforming,” Chapter 18 in Handbook of

Antennas in Wireless Communications, L. C. Godara, Ed., CRC Press, Aug. 2001.
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Signal Model and Problem Statement (cont’)

• Due to imperfect channel estimation and limited feedback, the

transmitter may only have inaccurate CSI in practice.

• Let h̄1, . . . , h̄K ∈ C
Nt denote the channel estimates at the

transmitter. The true channels can be expressed as

hi = h̄i + ei, i = 1, . . . , K,

where ei ∈ CNt represents the CSI error vector.

• We assume:

ei ∼ CN (0,Ci), i = 1, . . . , K,

where Ci � 0.
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Signal Model and Problem Statement (cont’)

• It is desirable to design the beamformers {wi}Ki=1 such that the

SINR satisfaction probability

Prei∼CN (0,Ci)

{

|(h̄i + ei)
H
wi|2

∑K
k 6=i |(h̄i + ei)Hwk|2 + σ2

i

≥ γi

}

is close to one.
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Performance of Non-robust Design

Simulation results of histogram of SINR satisfaction probability (of user 1)

for Nt = K = 3, Ci = 0.002INt
and σ2

i = 0.01.
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are tested. The empirical probability is obtained by averaging over 10,000 Gaussian CSI errors.
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Probabilistic SINR Constrained Robust Design

• Let ρi ∈ (0, 1] denotes user i’s maximum tolerable SINR outage

probability.

• An outage constrained robust design formulation [Shenouda08]:

min
wi∈C

Nt ,
i=1,...,K

K
∑

i=1

‖wi‖2 (2a)

s.t. Prei∼CN (0,Ci)

{

|(h̄i + ei)
H
wi|2

∑K

k 6=i
|(h̄i + ei)Hwk|2 + σ2

i

≥ γi

}

≥ 1− ρi,

i = 1, . . . ,K. (2b)

[Shenouda08] M. B. Shenouda and T. N. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna

downlink, in Proc. 42nd Asilomar Conference, Pacific Grove, Oct. 26-29, 2008, pp. 1120-1124.
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Probabilistic SINR Constrained Robust Design (cont’)

• Solving problem (2) is challenging because

Pr







(h̄i + ei)
H





1

γi
wiw

H
i −

∑

k 6=i

wkw
H
k



 (h̄i + ei) ≥ σ
2
i







≥ 1− ρi

– nonconvex SINR formulation

– no closed-form expression for the probability function

• Existing approximation methods include

– probabilistic SINR constrained SOC problem [Shenouda08];

– worst-case robust beamforming problem [Wang10]

Conservative approximation method: the probabilistic SINR
constraints are guaranteed to be satisfied.

[Wang10] K.-Y. Wang, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “A semidefinite relaxation based conservative approach to robust

transmit beamforming with probabilistic SINR constraints,” in Proc. EUSIPCO, Aalborg, Denmark, August 23-27, 2010, pp. 407-411.
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Semidefinite relaxation (SDR)

• Replace each wiw
H
i with Wi � 0:

min
Wi∈H

Nt

i=1,...,K

K
∑

i=1

Tr(Wi) (3a)

s.t. Pr







(h̄i + ei)
H





1

γi
Wi −

∑

k 6=i

Wk



 (h̄i + ei) ≥ σ
2
i







≥ 1− ρi,

i = 1, . . . ,K, (3b)

W1, . . . ,WK � 0 (3c)

• Each probability constraint is of the form:

Pr{vHQv + 2Re{vHr}+ s ≥ 0} ≥ 1− ρ,

where v ∼ CN (0, In).

[Luo10] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems, IEEE

Signal Process. Mag., pp. 20-34, May 2010.
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Approximation by Bernstein-type Inequality

• Lemma 1 Let v ∼ CN (0, In), Q ∈ H
n, r ∈ C

n and s ∈ C. Then for

any ρ ∈ [0, 1], we have

Pr

{

v
H
Qv + 2Re{vH

r}+ s ≥ T

}

≥ 1− ρ, (4)

where

T = Tr(Q)−
√

2(− ln(ρ))
√

‖Q‖2F +2‖r‖2 + ln(ρ) λ+(Q) + s, (5)

in which λ+(Q) = max{λmax(−Q), 0}.

• Lemma 1 is obtained by extending the result in [Bechar10].

Inequality (4) is a Bernstein-type inequality.

[Bechar10] I. Bechar, “A Bernstein-type inequality for stochastic processes of quadratic forms of gaussian variables,” available on

http://arxiv.org/abs/0909.3595.
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Approximation by Bernstein-type Inequality (cont’)

• By Lemma 1, we obtain that

Tr(Q)−
√

2(− ln(ρ))
√

‖Q‖2F +2‖r‖2 + ln(ρ) λ+(Q) + s ≥ 0

(6)

is a sufficient condition for achieving

Pr{vHQv + 2Re{vHr}+ s ≥ 0} ≥ 1− ρ.
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Approximation by Bernstein-type Inequality (cont’)

• Observation: (6) can be reformulated as

Tr (Q)−
√
2δx− δy + s ≥ 0, (7a)

√

‖Q‖2F + 2‖r‖2 ≤ x, (7b)

yIn +Q � 0, (7c)

y ≥ 0, (7d)

where x, y ∈ R are slack (decision) variables.

• In summary, we can use (7) as a convex (conservative)

approximation to

Pr{vHQv + 2Re{vHr}+ s ≥ 0} ≥ 1− ρ.
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Proposed Approximation Formulation

• Define δi , − ln(ρi), i = 1, . . . , K, and apply (7) to (3):

min
Wi∈H

Nt ,xi,yi∈R,
i=1,...,K

K
∑

i=1

Tr(Wi) (8)

s.t. Tr (Qi(W1, . . . ,WK))−
√
2δixi − δiyi

+ si(W1, . . . ,WK) ≥ 0, i = 1, . . . ,K,
∥

∥

∥

∥

∥

∥





vec (Qi(W1, . . . ,WK))
√
2ri(W1, . . . ,WK)





∥

∥

∥

∥

∥

∥

≤ xi, i = 1, . . . ,K,

yiI+Qi(W1, . . . ,WK) � 0, i = 1, . . . ,K,

yi ≥ 0, Wi � 0, i = 1, . . . ,K,

is an convex approximation to problem (2).

Institute Comm. Eng., National Tsing Hua University, Taiwan 14



Tsung-Hui Chang

Proposed Approximation Method (cont’)

• The SDR problem (8) is in general an approximation because the

associated optimal {Wi}Ki=1 may not be of rank one.

• If the optimal {Wi}Ki=1 of (8) is not of rank one, additional

solution approximation procedures, e.g., Gaussian randomization,

is needed [Luo10].

• In computer simulations, we found that it is very rare to obtain a

higher-rank solution.

[Luo10] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems, IEEE

Signal Process. Mag., pp. 20-34, May 2010.
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Simulation Setting

• Nt = 3 and K = 3.

• 500 sets of channel estimates {h̄i}Ki=1 following the i.i.d. complex

Gaussian distribution.

• ρi = 0.1 and σ2
i = 0.01 for all i = 1, . . . , K.

• Ci = 0.002I3 for all i = 1, . . . , K.
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Rank-one Solutions

We declare that the obtained solution (W1, . . . ,WK) is of rank one if

the following condition is satisfied

λmax(Wi)

Tr(Wi)
≥ 0.99 for all i = 1, . . . , K. (9)

γ (dB) 1 3 5 7

ρi = 0.1 500/500 489/489 482/482 475/475

ρi = 0.01 499/499 479/480 475/475 463/463

γ (dB) 9 11 13 15

ρi = 0.1 462/462 441/441 419/419 363/363

ρi = 0.01 450/450 428/428 387/387 322/322

x/y: x is the number of realizations for which the rank-one solution is obtained, and y is the

number of feasible channel realizations.
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Histogram of SINR Satisfaction Probability (γi = 13dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Empirical SINR satisfaction probability (Mean = 1)

F
o
rm

u
la

ti
o
n
 I
 i
n

[S
h
e
n
o
u
d
a
0
8
] 
  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Empirical SINR satisfaction probability (Mean = 0.99379)

F
o
rm

u
la

ti
o
n
 i
n

[W
a
n
g
1
0
] 
  
  
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

P
ro

p
o
s
e
d
 m

e
th

o
d

Empirical SINR satisfaction probability (Mean = 0.96845)

[Shenouda08] M. B. Shenouda and T. N. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna

downlink, in Proc. 42nd Asilomar Conference, Pacific Grove, Oct. 26-29, 2008, pp. 1120-1124.

[Wang10] K.-Y. Wang, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “A semidefinite relaxation based conservative approach to robust

transmit beamforming with probabilistic SINR constraints,” in Proc. EUSIPCO, Aalborg, Denmark, August 23-27, 2010, pp. 407-411.
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Average Transmission Power versus Target SINR
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Computation Time Comparison(γi = 7dB)
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Formulation I in [Shenouda08]

Proposed method

Formulaiton in [Wang10]

Nt = K

The average computation time of each method is obtained by averaging over 50 feasible

channel realizations, on a laptop PC with 1.9GHz CPU and 4Gb RAM.
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Conclusions

• A new approximation method for the probabilistic SINR

constrained robust beamforming design problem has been

proposed.

• The proposed method is based on

– SDR

– Bernstein-type inequality

• Simulation results show that the proposed method outperforms

the existing methods in [Shenouda08] and [Wang10].

Thank you very much for your attention!

[Shenouda08] M. B. Shenouda and T. N. Davidson, Probabilistically-constrained approaches to the design of the multiple antenna

downlink, in Proc. 42nd Asilomar Conference, Pacific Grove, Oct. 26-29, 2008, pp. 1120-1124.
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