On Optimal Precoding in Wireless Multicast Systems

Yiyue Wu, Haipeng Zheng, Robert Calderbank, Sanjeev Kulkarni and H. Vincent Poor

Department of Electrical Engineering, Princeton University

May 27, 2011

Outline

- Overview
- 2 Improvement on Drop Rate
- Numerical Results
- 4 Conclusion

Motivation

An adaptive wireless system with feedback

- Precoding improves transmission rate and reliability
 - Precoding codebook is shared by the transmitter and receiver
 - The user feeds back the index of the best precoder
- Precoding has been deployed in 4th generation wireless standards

Motivation, Cont'd

- Well investigated in point to point communications
 - Precoding codebook designs
 - Feedback delay and error
- Precoding for multiuser systems?
 - We consider multicast channel
 - Each user feeds back the index of its best precoder
- What is the optimal precoding selection scheme for the transmitter?

Assumptions

- Each user is treated equally
 - No admission control
 - Feedback treated with equal importance
- Consider typical LTE setups
 - The base station with two antennas
 - Each user equipped with two antennas
- Consider LTE precoding codebook

Receive Structure

• The received signal for user *i* over one time slot is given by

$$\mathbf{r}_i = \mathbf{H}_i \mathbf{P} \mathbf{x} + \mathbf{n}_i$$
.

where **P** is the precoding matrix.

combine the received signals for all users as

$$R = HPx + n$$

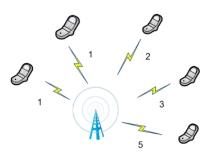
where
$$\mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_{N_u}]^T$$
, $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, \cdots, \mathbf{H}_{N_u}]^T$ and $\mathbf{n} = [\mathbf{n}_1, \mathbf{n}_2, \cdots, \mathbf{n}_{N_u}]^T$.

MMSE Capacity

ullet For the link between the base station and the $i^{
m th}$ user, the MMSE capacity is given as

$$C_{0, ext{MMSE}}(\mathbf{H}_i, \mathbf{P}) = \log \det (\mathbf{I} + \rho \mathbf{M})$$

where M is a diagonal matrix with


$$\mathbf{M}_{jj} = rac{1}{\left[\left(\mathbf{I} + \mathbf{P}^\dagger \mathbf{H}_i^\dagger \mathbf{R}_{\mathbf{n}_i}^{-1} \mathbf{H}_i \mathbf{P}
ight)^{-1}
ight]_{jj}} - 1$$

and $\mathbf{R}_{\mathbf{n}_i}$ is the noise covariance matrix given by $\mathbf{R}_{\mathbf{n}_i} = \mathbb{E}[\mathbf{n}_i \mathbf{n}_i^\dagger]$.

Schemes

- Random selection
- Round Robin
- Majority votes
- We propose probabilistic algorithms
 - Geometry of codebooks
 - Channel dependent

Problem formulation

 We aim to minimize the average drop rate. We assume when outage occurs, the packet is dropped. So the packet drop rate for the ith user is

$$\mathbf{1}_{\{C_0(\mathbf{H}_i,\mathbf{P}_k)<\lambda\}}$$

where λ is the required rate.

• The problem is formulated in the following:

$$k = \underset{k}{\operatorname{argmin}} \frac{1}{N_u} \sum_{i=1}^{N_u} \mathbf{1}_{\{C_0(\mathbf{H}_i, \mathbf{P}_k) < \lambda\}} |_{k_1, k_2, \cdots, k_{N_u}}.$$

Since CSI is unknown at transmitter, it is hard to attack.

Problem reformulation

Instead, we reformulate the following problem,

$$k = \operatorname*{argmin}_{k} \frac{1}{N_{u}} \sum_{i=1}^{N_{u}} \mathbb{E}_{k_{i}} \mathbf{1}_{\{C_{0}(\mathbf{H}_{i}, \mathbf{P}_{k}) < \lambda\}}$$

where the expectation is over \mathbf{H}_i and k_i is the index of the optimal precoder for the i^{th} user.

 Given a codebook and a stationary channel, it is feasible to evaluate

$$\mathbb{E}_{k_i} \mathbf{1}_{\{C_0(\mathbf{H}_i,\mathbf{P}_k)<\lambda\}}$$

Algorithm procedure

• Step 1: Evaluate $\mathbb{E}_i \mathbf{1}_{\{C_0(\mathbf{H}, \mathbf{P}_j) < \lambda\}}$: **A**.

$$\mathbf{A}_{i,j} = \frac{1 - \mathbb{E}_i \mathbf{1}_{\{C_0(\mathbf{H}, \mathbf{P}_i) < \lambda\}}}{1 - \mathbb{E}_i \mathbf{1}_{\{C_0(\mathbf{H}, \mathbf{P}_i) < \lambda\}}}.$$

So **A** is in the following form:

$$\mathbf{A} = \left[egin{array}{ccccc} 1 & \cdots & & & & \\ \cdots & 1 & \cdots & & & \\ & \cdots & 1 & \cdots & \\ & & \cdots & 1 \end{array}
ight]$$

Step 2: Summarize the feedback of the receivers as a vector
 v, in which v_j denotes the number of occurrences of the preferred precoding matrix P_j.

Algorithm procedure Cont'd

• Step 3: Select the optimal precoder:

$$k^* = \operatorname*{argmax}_{k} [\mathbf{Av}]_{k}.$$

Illustration:

$$\mathbf{Av} = \left[egin{array}{cccc} 1 & \cdots & & & & \\ \cdots & 1 & \cdots & & & \\ & \cdots & 1 & \cdots & \\ & & \cdots & 1 \end{array}
ight] \left[egin{array}{c} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \end{array}
ight]$$

System Setup

- Channel model
 - stationary: **A** can be precalculated offline.
 - non-stationary or unknown: adaptive learning of **A** online.
- LTE precoding

Rank	Precoding Matrices
1	$\mathbf{Q}_1 = \left[egin{array}{c} 1 \\ 0 \end{array} ight], \; \mathbf{Q}_2 = \left[egin{array}{c} 0 \\ 1 \end{array} ight], \; \; \mathbf{Q}_3 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \\ 1 \end{array} ight]$
	$\mathbf{Q}_4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \mathbf{Q}_5 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}, \ \mathbf{Q}_6 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$
2	$rac{1}{\sqrt{2}}\left[egin{array}{cc}1&0\0&1\end{array} ight],\;rac{1}{2}\left[egin{array}{cc}1&1\1&-1\end{array} ight],\;rac{1}{2}\left[egin{array}{cc}1&1\j&-j\end{array} ight]$

LTE precoding

LTE precoding codebook

Rank	Precoding Matrices
1	$\mathbf{Q}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array}\right], \ \mathbf{Q}_2 = \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \ \ \mathbf{Q}_3 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$
	$\mathbf{Q}_4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \mathbf{Q}_5 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}, \ \mathbf{Q}_6 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$
2	$rac{1}{\sqrt{2}}\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array} ight], \ rac{1}{2}\left[egin{array}{cc} 1 & 1 \ 1 & -1 \end{array} ight], \ rac{1}{2}\left[egin{array}{cc} 1 & 1 \ j & -j \end{array} ight]$

- when SNR is low, rank 1 is optimal; Vice Versa, rank 2 is optimal.
- Construction of A.

Parametrization of A

- We consider low SNR scenario in this presentation.
- Observations: three antipodal pairs

•
$$\{\mathbf{Q}_1, \ \mathbf{Q}_2\}, \ \{\mathbf{Q}_3, \ \mathbf{Q}_4\}, \ \{\mathbf{Q}_5, \ \mathbf{Q}_6\}.$$

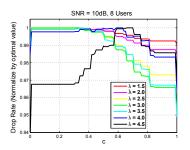
Parametrization of A:

$$\mathbf{A} = \begin{bmatrix} 1 & a & b & b & b & b \\ a & 1 & b & b & b & b \\ b & b & 1 & a & b & b \\ b & b & a & 1 & b & b \\ b & b & b & b & 1 & a \\ b & b & b & b & a & 1 \end{bmatrix}$$

Parametrization of A, Cont'd

Further Parametrization of A:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & c & c & c & c \\ 1 & 0 & c & c & c & c \\ c & c & 0 & 1 & c & c \\ c & c & 1 & 0 & c & c \\ c & c & c & c & 0 & 1 \\ c & c & c & c & 1 & 0 \end{bmatrix}$$


where
$$c = \frac{1-b}{1-a}$$
.

ullet Assuming stationary Gaussian Channel model, the optimal c is a function of λ that can be precalculated.

Optimal c

- When λ is low, the optimal c is close to 0, namely $b \simeq 1$.
- ullet When λ is high, the optimal c is close to 1, namely $a\simeq b$.

Adaptive learning of c

 When channel is non-stationary or the distribution is unknown, A needs to be learned.

Algorithm 1: Adaptive Algorithm

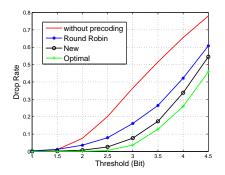
$$\begin{array}{c|c} \textbf{for} \ t \leftarrow 1 \ \textbf{to} \propto \textbf{do} \\ c' \leftarrow c_t + \sigma Z_t \\ r' \leftarrow \text{Average drop rate of strategy } c' \\ \textbf{if} \ r' \leq r_t \ \textbf{then} \\ c_{t+1} \leftarrow c', \ r_{t+1} \leftarrow r' \\ \textbf{else} \\ \hline & \text{With probability } e^{(r_t-r')/T} \\ c_{t+1} \leftarrow c', \ r_{t+1} \leftarrow r' \\ \hline & \text{With probability } 1 - e^{(r_t-r')/T} \\ c_{t+1} \leftarrow c_t \\ r_{t+1} \leftarrow (1-\alpha)r_t + \alpha r' \\ \hline & \textbf{end} \\ \end{array}$$

end

Relationship to R-factor

• For voice over IP (VoIP) traffic, the 'R-factor' γ is an indicator of voice quality.

$$\gamma = \gamma_{\alpha} - \alpha_1 \delta - \alpha_2 (\delta - \alpha_3) H - \beta_1 - \beta_2 \log(1 + 100\beta_3 \psi)$$


where δ is the one-way end-to-end delay in milliseconds, ψ is the packet loss percentage and the other are codec dependent parameters.

Packet drop rate has a direct impact on R-factor.

Improvement on Drop Rate

 \bullet Average packet drop rate for an 8-user multicast system with ${\rm SNR}=10{\rm dB}$

Improvement on R-factor

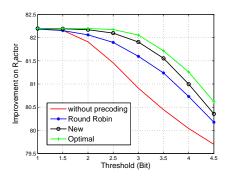
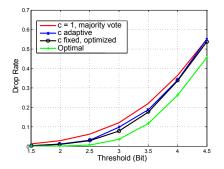



Figure: Improvement on the.

• R-factor for an 8-user multicast system with SNR = 10dB assuming no delay.

Performance of different strategies

 When channel is stationary, adaptive algorithm approaches the offline algorithm.

Conclusions

- We have considered precoding selection in multi-cast channel.
- We have proposed a set of probabilistic algorithms to improve the packet drop rate
- When channel is stationary, access measurement can be precalculated. Vice versa, an adaptive learning algorithm is provided.

THANK YOU!

