FROM MAXIMUM LIKELIHOOD TO ITERATIVE DECODING

F. Alberge, Z. Naja, P. Duhamel

Laboratoire des Signaux et Systèmes (L2S)

2011 International Conference on Acoustic, Speech and Signal processing

Introduction

Purpose:

- Clarify the relation between Maximum Likelihood Sequence Detection and Iterative Decoding (BICM, Turbo,...)
- Derive Iterative Decoding as an optimization problem
- Obtain an evaluation of the reliability of the result

State of the art:

- Analysis of iterative decoding: EXIT charts, Density evolution [TenBrink2001], [Gamal2001].
 Useful for design but limited to large block length
- Convergence analysis: Factor Graphs, Belief Propagation [Kshishgang2001], [Pearl88].
 Useful if the corresponding graph is a tree
- Information geometry [Richardson2000], [Ikeda2004].
 Very important analysis but difficult to use for design or improvement of the iterative decoding
- First steps using optimization: [Walsh2006], [Alberge2008]

System model and Notations

 $\ensuremath{\mathsf{BICM}}$ transmission scheme (results also apply to serially concatenated turbo-codes)

- **b**: binary message (vector of n_b bits)
- **c**: encoded bits (vector of *n* bits)
- **d**: interleaved encoded sequence (vector of *n* bits)
- s: complex transmitted sequence of symbols (vector of $\frac{n}{m}$ symbols)
- **y**: sequence of received symbols (vector of $\frac{n}{m}$ symbols) Noisy memoryless channel

Maximum Likelihood Decoding

Maximum Likelihood Sequence Detection (MLSD):

$$\widehat{\mathbf{b}}_{\mathit{MLD}} = \arg\max_{\mathbf{b} \in \{0,1\}^{n_b}} p(\mathbf{y} \mid \mathbf{b})$$

One to one mapping between binary message \mathbf{b} and interleaved coded sequence $\mathbf{d} \Rightarrow \mathsf{MLSD}$ reads:

$$\widehat{\mathbf{d}}_{MLD} = \arg\max_{\mathbf{d} \in \{0,1\}^n} \underbrace{p_{ch}(\mathbf{y} \mid \mathbf{d})}_{\substack{channel \\ probability}} \underbrace{I_{co}(\mathbf{d})}_{\substack{indicator \\ function \\ of \ the \ code}}$$

Equivalent to seeking optimal weighting for maximizing :

$$(\text{MLSD}) \quad \widehat{p}_{\textit{MLD}}(d) = \arg\max_{p \in \mathcal{E}_{\textit{s}}} \sum_{d} I_{\textit{co}}(d) p_{\textit{ch}}(y \mid d) p(d)$$

Two benefits : (i) \mathcal{E}_s : fully-factorized PMFs \Rightarrow $\mathbf{p}(\mathbf{d}) = \prod_i p(d_i)$, (ii) $p(d_i)$ is continuous

Towards a suboptimal process (1/2)

(MLSD) is untractable: interleaver + numerical value of n

(MLSD) can be modified in the following manner:

- Consider separately channel/mapping and coding : p(d) = I(d)q(d)
- Compute bit-marginals (n variables instead of 2^n)

Bit-marginals computation can be introduced as (without any approx.):

$$\left(\widehat{\mathbf{I}}_{MLD}(\mathbf{d}), \widehat{\mathbf{q}}_{MLD}(\mathbf{d})\right) = \arg\max_{\mathbf{I}, \mathbf{q} \in \mathcal{E}_s} \sum_{d_k} \sum_{\mathbf{d}: d_k} \mathbf{I}_{co}(\mathbf{d}) \mathbf{p}_{ch}(\mathbf{y} \mid \mathbf{d}) \mathbf{I}(\mathbf{d}) \mathbf{q}(\mathbf{d})$$

Approximation: the bit-marginals of the product are replaced by the product of the bit-marginals.

Towards a suboptimal process (2/2)

Suboptimal (MLSD): maximize C_k defined as:

$$\tilde{C}_k(\mathbf{I}, \mathbf{q}) = \sum_{d_k} \left(\sum_{\mathbf{d}: d_k} \mathbf{I}_{co}(\mathbf{d}) \prod_i q_i(d_i) \right) \left(\sum_{\mathbf{d}: d_k} \mathbf{p}_{ch}(\mathbf{y} \mid \mathbf{d}) \prod_i l_i(d_i) \right)$$

Some comments on the suboptimal problem ($MLSD_{approx}$):

- Computation of the bit-marginals is tractable: $\sum_{\mathbf{d}:d_k} \mathbf{I}_{co}(\mathbf{d}) \prod_i q_i(d_i)$ is the output of a BCJR
- $m{\circ}$ \mathcal{C}_k is a function of k (a bit position), but also depends on the other bits.

The original problem (MLSD) is replaced by a distributed optimization strategy based on the n cost functions C_k .

 C_k is relevant for a maximization over $I_k(d_k)q_k(d_k)$ the marginal of bit in position k. Nothing in this new formulation ensures consistency of the estimates (useful later)

Global maximum of MLSD_{approx}: some results

Proposition

The maximum of $\tilde{\mathcal{C}}_k$, $1 \leq k \leq n$ is obtained for $\mathbf{q} = \widehat{\mathbf{q}}$ and $\mathbf{l} = \widehat{\mathbf{l}}$ such that

$$\widehat{\mathbf{I}}(\mathbf{d}')\widehat{\mathbf{q}}(\mathbf{d}) = \begin{cases} 1, & (\mathbf{d}, \mathbf{d}') = (\widehat{\mathbf{d}}_{co}, \widehat{\mathbf{d}}_{ch}) \\ 0, & otherwise \end{cases}$$
(1)

where $(\widehat{\mathbf{d}}_{co}, \widehat{\mathbf{d}}_{ch}) = \arg\max_{(\mathbf{d}, \mathbf{d}') \in \mathcal{S}_k} \mathbf{p}_{ch}(\mathbf{y} \mid \mathbf{d}') \mathbf{I}_{co}(\mathbf{d})$ and \mathcal{S}_k denotes the set of pairs $(\mathbf{d}, \mathbf{d}')$ of binary words such that $d_k = d_k'$.

A separate maximization of $\tilde{\mathcal{C}}_k \Rightarrow$ agreement between coder and mapping/channel for bit in position k.

Global maximum of MLSD_{approx}: some results

Now define the global criterion

$$\tilde{\mathcal{C}} = \sum_{k=1}^{n} \tilde{\mathcal{C}}_{k}$$

The value of the maximum of $\tilde{\mathcal{C}}\Rightarrow$ an indication of the agreement between coder and mapping/channel for the whole sequence.

Proposition

Assume that $\widetilde{\mathcal{C}}$ has a global maximum at $(\widehat{\mathbf{l}}_{\widetilde{\mathcal{C}}}, \widehat{\mathbf{q}}_{\widetilde{\mathcal{C}}})$. If $(\widehat{\mathbf{l}}_{\widetilde{\mathcal{C}}}, \widehat{\mathbf{q}}_{\widetilde{\mathcal{C}}})$ is such that $\widehat{\mathbf{l}}_{\widetilde{\mathcal{C}}} \widehat{\mathbf{q}}_{\widetilde{\mathcal{C}}} (\mathbf{d}) = \delta_{\mathbf{d}_0}$ at $\mathbf{d} = \mathbf{d}_0$ then $\mathbf{d}_0 = \widehat{\mathbf{d}}_{MLD}$.

If the global maximum of $\widetilde{\mathcal{C}}$ is a Delta-Kronecker PMF \Rightarrow MLSD (high SNR)

Local maximization process

A distributed maximization strategy:

$$\left(\widehat{l}_k,\widehat{q}_k
ight) = \arg\max_{l_k,q_k \in \mathcal{F}} \widetilde{\mathcal{C}}_k \quad 1 \leq k \leq n$$

$$\left(\widehat{l}_k, \widehat{q}_k\right) = \arg\max_{l_k, q_k \in \mathcal{F}} \sum_{d_k} l_k(d_k) q_k(d_k) \underbrace{\left(\sum_{\mathbf{d}: d_k} \mathbf{I}_{co}(\mathbf{d}) \prod_{i \neq k} q_i(d_i)\right) \left(\sum_{\mathbf{d}: d_k} \mathbf{p}_{ch}(\mathbf{y} \mid \mathbf{d}) \prod_{i \neq k} l_i(d_i)\right)}_{\times_{-k}(d_k)}$$

 \mathcal{F} : set of all possible PMFs on d_k .

• hard solution (local minima?):

$$\widehat{l}_k(d_k)\widehat{q}_k(d_k) = 1$$
 if $x_{-k}(d_k) > x_{-k}(1 - d_k)$
= 0 otherwise

• soft solution (preferred):

$$\widehat{I}_k(d_k)\widehat{q}_k(d_k)\propto x_{-k}(d_k)$$

Corresponding Iterative Maximization

Initialization:

$$I_k^{(0)}(dk) = q_k^{(0)}(d_k) = 1/2 \quad 1 \le k \le n \quad d = k \in \{0, 1\}$$

- Repeat
 - Set $I_k(d_k) = I_k^{(it-1)}(d_k)$, $1 \le k \le n$ and $q_i(d_i) = q_i^{(it-1)}(d_i)$ for $i \ne k$ (Jacobi implementation)
 - Compute $q_k^{(it)}$ based on soft solution:

$$q_k^{(it)}(d_k) \propto \sum_{\mathbf{d}:d_k} I_{co}(\mathbf{d}) \sum_{\mathbf{d}:d_k} p_{ch}(\mathbf{y} \mid \mathbf{d}) \prod_{j \neq k} I_j^{(it-1)}(d_j)$$

- Set $l_i(d_i) = l_i^{(it-1)}(d_i)$ for $i \neq k$ and $q_k(d_k) = q_k^{(it)}(d_k)$ for $1 \leq k \leq n$ (Jacobi/Gauss-Seidel implementation)
- Compute $I_k^{(it)}$ based on soft solution:

$$I_k^{(it)}(d_k) \propto rac{\sum_{\mathbf{d}:d_k} I_{co}(\mathbf{d}) \prod_{j \neq k} q_j^{(it)}(d_j)}{\sum_{\mathbf{d}:d_k} I_{co}(\mathbf{d})}$$

 l_k , q_k are the EXTRINSICS propagated in BICM-ID

From Maximum Likelihood to iterative decoding: summary

An optimal optimization problem: MLSD

Approximation: fully-factorized PMFs

A sub-optimal (global) optimization problem: $MLSD_{approx}$ global maximum in $MLSD \stackrel{?}{=}$ global maximum in $MLSD_{approx}$

Distributed optimization strategy: the actual BICM-ID algorithm

n sub-optimal (local) optimization problems (C_k) Efficiency of the joint optimization problem? \Rightarrow value of $\widetilde{C} = \sum_{k=1}^{n} \widetilde{C}_k$

Evaluation of the quality of the obtained solution

BICM iterative decoding

Convergence? (nonlinear Gauss-Seidel/Jacobi)

Simulation (1/2)

- $n_b = 400$ (left) $n_b = 4000$ (right)
- EbN0 = 6dB (left) EbN0 = 4dB (right)
- Modulation: 16QAM
- Mapping: SP
- Convolutive Code: [5 7]

 \Rightarrow Correlation between value of \widetilde{C} and number of errors

Simulation (2/2)

Modulation: 16QAM

Mapping: SP

• Convolutive Code: [5 7]

 $\bullet \ \textit{Eb/N0} \in \{4\textit{dB},5\textit{dB},...,11\textit{dB},12\textit{dB}\} \ \text{(uniform distribution)}$

Threshold on $\widetilde{\mathcal{C}}$	-20	-10	-5
(log)			
BER _a (frames above	$8,78.10^{-4}$	$4,68.10^{-4}$	$2,08.10^{-4}$
treshold)			
BER _s (frames under	0, 205	0, 13	$9,28.10^{-2}$
treshold)			
p _s (rejected frames) (%)	6,4%	10,8%	14,8%
p _{false,s} (false alarm) (%)	2,5%	36,4%	53,83%

 \Rightarrow A target BER can be guaranteed even in an unsteady noisy environment

Conclusion

- Iterative Decoding derived from Maximum Likelihood
- No specific assumption (block length, tree, ...)
- Extrinsics proceed from an hybrid Jacobi/Gauss-Seidel scheduling
- Convergence study connected with nonlinear Jacobi/Gauss-Seidel (submitted to EUSIPCO 2011)
- Efficiency of the distributed optimization process: checkable at the receiver side through evaluation of the criterion