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Introduction

Purpose:

Clarify the relation between Maximum Likelihood Sequence
Detection and Iterative Decoding (BICM, Turbo,...)

Derive Iterative Decoding as an optimization problem

Obtain an evaluation of the reliability of the result

State of the art:

Analysis of iterative decoding: EXIT charts, Density evolution
[TenBrink2001], [Gamal2001].
Useful for design but limited to large block length

Convergence analysis: Factor Graphs, Belief Propagation
[Kshishgang2001], [Pearl88].
Useful if the corresponding graph is a tree

Information geometry [Richardson2000], [Ikeda2004].
Very important analysis but difficult to use for design or improvement of the

iterative decoding

First steps using optimization: [Walsh2006], [Alberge2008] ......
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System model and Notations

BICM transmission scheme (results also apply to serially concatenated
turbo-codes)

b: binary message (vector of nb bits)

c: encoded bits (vector of n bits)

d: interleaved encoded sequence (vector of n bits)

s: complex transmitted sequence of symbols (vector of n
m symbols)

y: sequence of received symbols (vector of n
m symbols) - Noisy

memoryless channel
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Maximum Likelihood Decoding

Maximum Likelihood Sequence Detection (MLSD):

b̂MLD = arg max
b∈{0,1}nb

p(y | b)

One to one mapping between binary message b and interleaved
coded sequence d ⇒ MLSD reads:

d̂MLD = arg max
d∈{0,1}n

pch(y | d)︸ ︷︷ ︸
channel

probability

Ico(d)︸ ︷︷ ︸
indicator
function

of the code

Equivalent to seeking optimal weighting for maximizing :

(MLSD) p̂MLD(d) = arg max
p∈Es

∑
d

Ico(d)pch(y | d)p(d)

Two benefits : (i) Es : fully-factorized PMFs ⇒ p(d) =
∏

i p(di ),

(ii) p(di ) is continuous
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Towards a suboptimal process (1/2)

(MLSD) is untractable: interleaver + numerical value of n

(MLSD) can be modified in the following manner:

Consider separately channel/mapping and coding : p(d) = l(d)q(d)

Compute bit-marginals (n variables instead of 2n)

Bit-marginals computation can be introduced as (without any approx.):(̂
lMLD(d), q̂MLD(d)

)
= arg max

l,q∈Es

∑
dk

∑
d:dk

Ico(d)pch(y | d)l(d)q(d)

Approximation: the bit-marginals of the product are replaced by the

product of the bit-marginals.
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Towards a suboptimal process (2/2)

Suboptimal (MLSD): maximize Ck defined as:

C̃k (l,q) =
∑
dk

(∑
d:dk

Ico(d)
∏

i

qi (di )

)(∑
d:dk

pch(y | d)
∏

i

li (di )

)

Some comments on the suboptimal problem (MLSDapprox):

Computation of the bit-marginals is tractable:∑
d:dk

Ico(d)
∏

i qi (di ) is the output of a BCJR

Ck is a function of k (a bit position), but also depends on the other
bits.

The original problem (MLSD) is replaced by a distributed optimization
strategy based on the n cost functions Ck .

Ck is relevant for a maximization over lk (dk )qk (dk ) the marginal of bit in
position k. Nothing in this new formulation ensures consistency of the

estimates (useful later)
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Global maximum of MLSDapprox : some results

Proposition

The maximum of C̃k , 1 ≤ k ≤ n is obtained for q = q̂ and l = l̂
such that

l̂(d′)q̂(d) =

{
1, (d,d′) = (d̂co , d̂ch)
0, otherwise

(1)

where (d̂co , d̂ch) = arg max(d,d′)∈Sk
pch(y | d′)Ico(d) and Sk

denotes the set of pairs (d,d′) of binary words such that dk = d ′k .

A separate maximization of C̃k ⇒ agreement between coder and

mapping/channel for bit in position k .
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Global maximum of MLSDapprox : some results

Now define the global criterion

C̃ =
n∑

k=1

C̃k

The value of the maximum of C̃ ⇒ an indication of the agreement

between coder and mapping/channel for the whole sequence.

Proposition

Assume that C̃ has a global maximum at (̂lC̃ , q̂C̃). If (̂leC , q̂eC) is such

that l̂eC q̂eC(d) = δd0 at d = d0 then d0 = d̂MLD .

If the global maximum of C̃ is a Delta-Kronecker PMF ⇒ MLSD
(high SNR)
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Local maximization process

A distributed maximization strategy:„blk ,bqk

«
= arg max

lk ,qk∈F
C̃k 1 ≤ k ≤ n

„blk ,bqk

«
= arg max

lk ,qk∈F

X
dk

lk (dk )qk (dk )

„X
d:dk

Ico (d)
Y
i 6=k

qi (di )

«„X
d:dk

pch(y | d)
Y
i 6=k

li (di )

«
| {z }

x−k (dk )

F : set of all possible PMFs on dk .

hard solution (local minima?):

l̂k (dk )q̂k (dk ) = 1 if x−k (dk ) > x−k (1− dk )
= 0 otherwise

soft solution (preferred):

l̂k (dk )q̂k (dk ) ∝ x−k (dk )
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Corresponding Iterative Maximization

Initialization:

l
(0)
k (dk) = q

(0)
k (dk ) = 1/2 1 ≤ k ≤ n d = k ∈ {0, 1}

Repeat

Set lk (dk ) = l
(it−1)
k (dk ), 1 ≤ k ≤ n and qi (di ) = q

(it−1)
i (di ) for i 6= k

(Jacobi implementation)

Compute q
(it)
k based on soft solution:

q
(it)
k (dk ) ∝

X
d:dk

Ico (d)
X
d:dk

pch(y | d)
Y
j 6=k

l
(it−1)
j (dj )

Set li (di ) = l
(it−1)
i (di ) for i 6= k and qk (dk ) = q

(it)
k (dk ) for 1 ≤ k ≤ n

(Jacobi/Gauss-Seidel implementation)

Compute l
(it)
k based on soft solution:

l
(it)
k (dk ) ∝

P
d:dk

Ico (d)
Q

j 6=k q
(it)
j (dj )P

d:dk
Ico (d)

lk , qk are the EXTRINSICS propagated in BICM-ID
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From Maximum Likelihood to iterative decoding: summary

An optimal optimization problem: MLSD
↓

Approximation: fully-factorized PMFs

A sub-optimal (global) optimization problem: MLSDapprox

global maximum in MLSD
?
= global maximum in MLSDapprox

↓

Distributed optimization strategy: the actual BICM-ID algorithm

n sub-optimal (local) optimization problems (Ck )

Efficiency of the joint optimization problem? ⇒ value of eC =
Pn

k=1
eCk

↓

Evaluation of the quality of the obtained solution

BICM iterative decoding

Convergence? (nonlinear Gauss-Seidel/Jacobi)
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Simulation (1/2)

nb = 400 (left) nb = 4000 (right)

EbN0 = 6dB (left) EbN0 = 4dB (right)

Modulation: 16QAM

Mapping: SP

Convolutive Code: [5 7]

⇒ Correlation between value of C̃ and number of errors
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Simulation (2/2)

Modulation: 16QAM

Mapping: SP

Convolutive Code: [5 7]

Eb/N0 ∈ {4dB, 5dB, ..., 11dB, 12dB} (uniform distribution)

Threshold on C̃
(log)

−20 −10 −5

BERa (frames above

treshold)

8, 78.10−4 4, 68.10−4 2, 08.10−4

BERs (frames under

treshold)

0, 205 0, 13 9, 28.10−2

ps (rejected frames) (%) 6, 4% 10, 8% 14, 8%

pfalse,s (false alarm) (%) 2, 5% 36, 4% 53, 83%

⇒ A target BER can be guaranteed even in an unsteady noisy environment
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Conclusion

Iterative Decoding derived from Maximum Likelihood

No specific assumption (block length, tree, ...)

Extrinsics proceed from an hybrid Jacobi/Gauss-Seidel
scheduling

Convergence study connected with nonlinear
Jacobi/Gauss-Seidel (submitted to EUSIPCO 2011)

Efficiency of the distributed optimization process: checkable
at the receiver side through evaluation of the criterion
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