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Multi-hop routing

Shortest path vs. dynamic back-pressure

BP [Tassiulas ‘92

@ DP: BF, FW, ...
@ Distributed

@ Must know arrival rate

@ Quasi-static, very slow to
adapt to

@ changing arrivals/load
o availability/failure throughput (all paths)

o fading/interference ... but delay can be large -
patterns U(load), § — rand walk!
@ Claim: Low delay (shortest
path)
@ ... but only at low system
loads

One-hop differential backlog
Distributed v Lightweight
Auto-adapts v

Highly dynamic, agile v
Claim: maximal stable
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Multi-hop routing

Back-pressure routing

Ws=30
: :@ - O

dest

@ Favors links with low back-pressure (hence name)
@ Backtracking / looping possible!
@ Local communication, trivial computation
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Multi-hop

Back-pressure routing

Multiple destinations, commodities?

@ multiple queues per node
o (max diff backlog) winner-takes-all per link

@ Wireline: local communication, trivial computation
@ Wireless?

@ Broadcast medium: interference

o

Link rates depend on transmission scheduling, power of other
links

@ Globalization - but also opportunity to shape-up playing field ...
@ ... through appropriate scheduling, power control
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Multi-hop routing

Back-pressure power control
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Multi-hop routing

Back-pressure power control
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Link activation / scheduling: ®
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©

Max stable throughput v

Backbone behind modern
NUM

Core problem in wireless
networking

Countable control actions:
random, adopt if > current

Still throughput-opt! [Tass’98]

-butD 7
Continuous opt vars?

BPPC [Tassiulas et al, '92 —]
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Multi-hop routing

Reminiscent of ...

DSL: sum-rate maximization BPPC

Single-hop DSL Multi-hop network

@ Listen-while-talk v/ @ No listen-while-talk X

@ Dedicated (Tx,Rx) @ Shared Tx, Rx =

@ Free choice of Gy ¢'s @ Restricted Gy /'s

@ NP-hard [Luo, Zhang] JE NP-hard? ))

b
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Multi-hop routing

Peel off

Generic backlogs Choosing backlogs
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Multi-hop routing

DSL — Multi-hop network optimization

@ Backlog reduction — BPPC contains DSL — also NP-hard
@ Can reuse tools from DSL

@ In particular, lower approximation algorithms:

@ High SINR — Geometric Programming

@ Successive approximation from below: SCALE [Papandriopoulos
and Evans, 2006]

@ Uses

— _Zo

o= 1+20
alog(z) + 8 <log(1 + z) for { 5 = log(1 + 2) - % log(zo)

tight at z,; — log(z) < log(1+2z) as z, — c©
o Start from high SINR, tighten bound at interim solution
o Majorization (actually, minorization)
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Key difference with DSL

BPPC problem must be solved repeatedly for every slot
Batch algorithms: prohibitive complexity

Need adaptive, lightweight solutions (to the extent possible)
Built custom interior point algorithms

Normally, one would init using solution of previous slot; take
refinement step

e 6 ¢ 6 ¢

Doesn’t work ...
@ Why?

(]
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Proper warm-start

*]
*]
*]
]
]
(]

No listen-while-talk, shared Tx/Rx

Push-pull ‘wave’ propagation

Solution from previous slot very different from one for present slot
Even going back a few slots

Quasi-periodic behavior emerges

Idea: hold record of solutions for W previous slots. W > upper
bound on period

W evaluations of present objective function (cheap!)
@ Pick the best to warm-start present slot
@ Needs few IP steps to converge

E. Matskani, N. Sidiropoulos, and L. TassiulasBack-pressure Power Control of Wireless Muli ICASSP 2011, Prague 11/19



Multi-hop routing

Simulation setup

Network topology graph

meters
@
3

meters

@ N = 6 nodes, low-left = s, top-right = d, L = 21 links
@ Gy ~ 1/d* G = 128, no-listen-while-talk 1/eps
oV, =10"12 P =5 v/

@ Deterministic (periodic) arrivals
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Multi-hop routing

High SINR

Scenariol, Batch high—SINR algorithm; arrival rate per slot = 9.7
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Multi-hop routing

High SINR

Scenariol, Batch high—SINR algorithm; arrival rate per slot = 9.8
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Multi-hop routing

Successive Approximation

Scenariol, Batch S.A. algorithm; arrival rate per slot = 10.4
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Multi-hop routing

Successive Approximation

Scenariol, Batch S.A. algorithm;
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Multi-hop routing

Best Response

Scenariol: Back Pressure Best Response algorithm;  arrival rate per slot = 5.8

120 4 250
o 100 o 200
o S
S 80 =
¥ S 150
8 60 2
100
g 40 5
£ 3 50
20
0 0=
0 500 1000
time slot time slot
6 12
10
. 2°
£ 4
2
0
0 500 1000 0 500 1000
time slot time slot

E. Matskani, N. Sidiropoulos, and L. TassiulasBack-pressure Power Control of Wireless Muli ICASSP 2011, Prague 17/19



Multi-hop routing

Throughput comparison

Table: Attainable stable arrival rates in packets per slot.

Scenario | B/A high-SINR | B/A successive | Best Resp
Scenario 1 9.7 10.4 5.7
Scenario 2 2.4 7.5 2.1
Scenario 3 12.6 15.7 4.4
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Ongoing & future work

Ongoing & future work

Looking ahead

@ Distributed BPPC

@ Robustness (imperfect / outdated CSI)

@ MIMO nodes - beamforming? precoding? spatial MUX?
@ Other modalities - multicasting?

@ All NP-hard, need effective approximation
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