Intra-Session Variability Compensation and a Hypothesis Generation and Selection Technique for Speaker Segmentation

C. Vaquero^{1,2}, A. Ortega¹, E. Lleida¹

¹VIVOLAB, GTC, I3A, University of Zaragoza, Spain ²Agnitio S.L, Spain

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Segmentation of two-speaker conversations

• Speaker Diarization Problem:

- Who spoke when?
- Number of speaker is known and limited to two.
 - Easier task
 - Knowing the boundaries solve the problem: segmentation problem

Segmentation system

 New approaches for the segmentation of 2-speaker conversations: Factor Analysis using Eigenvoices¹

$$M(s) = M_{UBM} + Vy(s)$$

- M(s) speaker GMM-sv, M_{UBM} UBM GMM-sv (Dx1)
- V models inter-speaker variability (DxR)
- y(s): speaker factors (Rx1, R<<D)
- Fewer parameters to estimate
- Need less data to model speaker
- We can estimate y(s) on small segments

¹Castaldo, F. et al. "Stream Based Speaker Segmentation Using Speaker Factors and Eigenvoices", ICASSP, Las Vegas, NV, USA, 2008.

Segmentation System

²Vaquero, C. et al. "Confidence measures for speaker segmentation and their relation to speaker verification", INTERSPEECH, Makuhari, Chiba, Japan, September 2010

- Only inter-speaker variability is modeled
- Are other types of variability degrading speaker segmentation performance?

Variability Compensation

- Inter-session variability compensation
 - Very important for speaker recognition
 - Not for speaker segmentation/diarization
 - Unsupervised task: we do not have prior information of the speakers in a session
 - Inter-session variability may help to separate speakers during a session
 - They may use different communication channels

Variability Compensation

Intra-session variability compensation

- State of the art speaker recognition systems do not compensate for it
- Important for speaker segmentation/diarization
 - Most systems are based on clustering of very small pure segments
 - Compensating the variability among small segments for a single speaker may improve the clustering performance

Intra-Session Variability Compensation

- Obtain a stream of speaker factors from each recording
- Consider every session as a different class
- Model inter-speaker/inter-session variability as between-class variance
- Model intra-session as within-class variance

Intra-Session Variability Compensation

• Linear Discriminant Analysis (LDA)

- Technique for dimensionality reduction
- Maximize between-class variance
- Minimize within-class variance
- Within Class Covariance Normalization (WCCN)
 - Normalize within-class covariance to be the identity matrix for all classes
- Both have been successful for inter-session compensation in speaker recognition³

³Dehak, N. et al. "Front-end factor analysis for speaker verification", IEEE Transactions on Audio, Speech, and Language Processing, August 2010

Evaluation

Experimental setup

- NIST SRE 2008 summed channel condition
- 2213 five minute telephone conversations
- Speech/non speech labels are given
- Performance in terms of speaker segmentation error
 - Not taking into account overlapped speech
 - o 0.25 sec forgiveness collar

Evaluation: Intra-session variability compensation, small UBM (256g)

Segmentation system (spk factors)	Seg Err (%)
Baseline (20) no reseg	3.0
WCCN (20) no reseg	2.5
Baseline (50) no reseg	2.8
LDA (50 to 20) no reseg	2.6
WCCN (50) no reseg	2.0
LDA (50 to 20) + WCCN no reseg	2.4

Features: 12 MFCC

Evaluation: Intra-session variability compensation + resegmentation Segmentation system Seq Err (%) (factors) Baseline (20) + reseg 2.1WCCN (20) + reseg 1.7 Baseline (50) + reseg 2.1 WCCN (50) + reseg 1.7

Features: 12 MFCC

Evaluation, Intra-session variability compensation:

New results with a larger UBM (1024g)

Segmentation system (factors)	Seg Err (%)
Baseline (50)+reseg	1.8
WCCN (50)+reseg	1.4
Baseline (100)+reseg	1.9
LDA (100 to 50)+reseg	1.5
WCCN (100)+reseg	1.4
LDA (100 to 50)+WCCN+reseg	1.3

Features: 19 MFCC + delta

Segmentation Hypothesis Generation and Selection

- Iteratively split the conversation into two halves
 - Obtain 4 levels
- Segment every slice separately
- Select best segmented slices (confidence measures)
- Agglomerate best slices until we have 2 spks
- Run Viterbi reseg
 - For every level
 - MFCC
 - 32 Gaussians
- Select best level
 - Confidence measures
 - Majority voting

Segmentation Hypotheses Generation and Selection: Confidence Measures²

o BIC

- MFCC space
- 32 comp. GMM speaker models, 64 comp GMM Null hyp
- BIC_{2spks}-BIC_{Null}
- o KL
 - Speaker factor space
 - Gaussian speaker models
- Fusion of both measures
 - Using FoCal toolkit⁴
 - Optimized to segregate those files having less than 1% segmentation error

²Vaquero, C. et al "Confidence Measures for Speaker Segmentation and their Relation to Speaker Verification", in Proc Interspeech, Makuhari, Japan, 2010.

⁴Brümmer, N. online: Online: <u>http://sites.google.com/site/nikobrummer/focal</u>

Evaluation: Hypothesis Generation and Selection, small UBM (256g)

Segmentation	Seg Err (%),	Seg Err (%),
system	no comp	WCCN
Level 1	2.1	1.7
Level 2	2.1	1.8
Level 3	2.3	2.1
Level 4	2.5	2.0
Hypothesis Selection	1.9	1.7 (1.5*)
Best Selection	1.1	0.9

*Major Voting

Evaluation, Hypothesis Generation and Selection: New results with a larger UBM (1024g)

Segmentation system	Seg Err (%),
	LDA (100-50)+WCCN
Level 1	1.3
Level 2	1.2
Level 3	1.5
Level 4	1.7
Hypothesis Selection	1.0
Best Selection	0.7

Features: 19 MFCC + delta

Conclusions

o Intra-session variability compensation

- It helps for speaker segmentation
- WCCN obtains better performance than LDA and similar to LDA+WCCN
- # spk factors $\uparrow \longrightarrow$ computational cost $\uparrow\uparrow$
 - WCCN is better for low computational cost applications
 - $\circ\,$ LDA (100 50)+WCCN is the best configuration.
- WCCN (20) reduces seg error: **2.1%** to **1.7%**
- LDA (100-50)+WCCN: 1.9% to 1.3% (large UBM)
- WCCN helps the PCA+K-means initialization
- Hypothesis Generation and Selection
 - No compensation: **2.1%** to **1.9%**, up to 1.1%
 - WCCN: **1.7%** to **1.5%** (major voting) up to 0.9%
 - LDA (100-50)+WCCN: 1.3% to 1.0% (large UBM) up to 0.7%

Thank you!