An Utterance Comparison Model for Speaker Clustering Using Factor Analysis

Woojay Jeon
Changxue Ma
Dusan Macho

Speaker Clustering

- Definition
- Cluster a set of speaker-homogeneous speech utterances such that each cluster corresponds to a unique speaker
- Each utterance contains speech from only one speaker
- The source speakers and the number of speakers are unknown
- Applications
- Speech recognition : Use a predefined set of speaker clusters to do robust speaker adaptation when test data is very limited
- Speaker diarization : "Who spoke when"

Speaker Diarization

- Given an unlabelled, random recording of an unknown number of unknown speakers talking, determine the parts spoken by each person.

Cluster 1
Clustering error
example 3: there are less speakers than clusters

Cluster 3

- If the number of clusters $==$ the number of speakers, and each cluster actually contains speech by only one person, we have perfect speaker diarization.

"Classic" Speaker Diarization Method

Popular Distance Measures

- Given two arbitrary speech utterances X_{A} and X_{B}, what is the "distance" between them?
- Generalized Likelihood Ratio (GLR)

$$
\operatorname{GLR}_{A, B}=\log \frac{P\left(X_{A}, X_{B} \mid \lambda_{A, B}\right)}{P\left(X_{A} \mid \lambda_{A}\right) P\left(X_{B} \mid \lambda_{B}\right)}
$$

- Cross-Likelihood Ratio (CLR)

$$
\mathrm{CLR}_{A, B}=\log \frac{P\left(X_{A} \mid \lambda_{B}\right)}{P\left(X_{A} \mid \lambda_{A}\right)}+\log \frac{P\left(X_{B} \mid \lambda_{A}\right)}{P\left(X_{B} \mid \lambda_{B}\right)}
$$

- Bayesian Information Criterion (BIC) Distance

$$
\mathrm{BICD}_{A, B}=B I C\left(X_{A}, X_{B} \text { separate }\right)-B I C\left(X_{A}, X_{B} \text { merged }\right)
$$

where BIC $=($ Log Likelihood of Observations $)-\frac{1}{2} \cdot \alpha \cdot($ num params $) \cdot \log ($ num frames $)$

A Better Distance Measure?

- The previous distance measures are purely mathematical constructs
- Lack of a rigorous justification on how they can compare utterances based on physical speaker similarity
- The only physical element is the feature set (MFCCs)
- No statistical training is involved
- Somewhat ad-hoc
- "Trainable" distance metrics [Aronowitz 07], Eigenvoice-based methods [Falthauser 01], [Castaldo 08] have been proposed to address these problems
- Eigenvoice, Eigenchannels, and Factor Analysis [Kenney 08] provide an elegant, analytic framework for modeling interspeaker and intraspeaker variability

An "Utterance Comparison Model"

- Given two arbitrary speech utterances X_{A} and X_{B}, define the distance as the probability that the two utterances were spoken by the same person

$$
X_{A}=\left\{\mathbf{x}_{a, 1}, \mathbf{x}_{a, 2}, \cdots, \mathbf{x}_{a, A}\right\}, X_{B}=\left\{\mathbf{x}_{b, 1}, \mathbf{x}_{b, 2}, \cdots, \mathbf{x}_{b, B}\right\}
$$

- Assuming each speaker is w_{i}, and the posterior probability $P\left(w_{i} \mid X\right)$ is known, we have

$$
P\left(H_{1} \mid X_{A}, X_{B}\right)=\sum_{i=1}^{W} P\left(w_{i} \mid X_{A}\right) P\left(w_{i} \mid X_{B}\right)
$$

where W is the population of the world

- We also have

$$
P\left(H_{0} \mid X_{a}, X_{b}\right)=\sum_{i=1}^{W} \sum_{j=1, j \neq i}^{W} P\left(w_{i} \mid X_{a}\right) P\left(w_{j} \mid X_{b}\right)
$$

- Using $\sum_{i=1}^{w} P\left(w_{i} \mid X\right)=1$, it is easy to show that

$$
P\left(H_{0} \mid X_{a}, X_{b}\right)+P\left(H_{1} \mid X_{a}, X_{b}\right)=1
$$

Factor Analysis

- Factor analysis says that

$$
\begin{aligned}
& \mathbf{s}=\mathbf{m}+V \mathbf{y}+U \mathbf{z} \\
& \mathbf{y} \square N[0, I], \mathbf{z} \square N[0, I]
\end{aligned}
$$

- s:speaker-dependent GMM's mean supervector
- m : Universal Background Model(UBM)'s mean supervector
- y : speaker factor vector
- z: channel factor vector
- V : Eigenvoice matrix models inter-speaker variabilities
- U : Eigenchannel matrix models intra-speaker variabilities
- Assuming each unique speaker w_{i} is mapped to a unique speaker factor vector \mathbf{y}_{i}, the utterance comparison model becomes

$$
P\left(H_{1} \mid X_{A}, X_{B}\right)=\sum_{i=1}^{W} P\left(\mathbf{y}_{i} \mid X_{A}\right) P\left(\mathbf{y}_{i} \mid X_{B}\right)
$$

\rightarrow The equation still has no practical value

Mold into an Analytical Form

- First instinct:

$$
\begin{aligned}
P\left(H_{1} \mid X_{A}, X_{B}\right)=\sum_{i=1}^{W} P\left(\mathbf{y}_{i} \mid\right. & \left.X_{A}\right) P\left(\mathbf{y}_{i} \mid X_{B}\right) \approx \int_{-\infty}^{\infty} p\left(\mathbf{y} \mid X_{a}\right) p\left(\mathbf{y} \mid X_{b}\right) d \mathbf{y} \\
& \rightarrow \text { WRONG! }
\end{aligned}
$$

- By using calculus and probability theory, the correct form can be derived as

$$
\begin{aligned}
P\left(H_{1} \mid X_{a}, X_{b}\right) & \approx \frac{1}{W} \int_{-\infty}^{\infty} \frac{p\left(\mathbf{y} \mid X_{a}\right) p\left(\mathbf{y} \mid X_{b}\right)}{p(\mathbf{y})} d \mathbf{y} \\
& =\frac{1}{W} \frac{1}{p\left(X_{a}\right)} \frac{1}{p\left(X_{b}\right)} \int_{-\infty}^{\infty} p\left(X_{a} \mid \mathbf{y}\right) p\left(X_{b} \mid \mathbf{y}\right) p(\mathbf{y}) d \mathbf{y}
\end{aligned}
$$

- Want closed form expression of this. Need to resolve $p(X)$ and $p(X \mid \mathbf{y})$.

Use Eigenvoices

- Simplify the problem by ignoring the intraspeaker variability, i.e.,

$$
\begin{gathered}
\mathbf{s}=\mathbf{m}+V \mathbf{y}+\varphi^{0} \mathbf{z} \\
\mathbf{y} \square N[0, I] \\
{\left[\begin{array}{c}
\mathbf{s}_{1} \\
\mathbf{s}_{2} \\
\vdots \\
\mathbf{s}_{M}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\vdots \\
\mathbf{m}_{M}
\end{array}\right]+\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{M}
\end{array}\right] \mathbf{y}}
\end{gathered}
$$

- For utterance X_{A} with A feature vectors, we have

$$
p\left(X_{A} \mid \mathbf{y}\right)=\prod_{t=1}^{A} p\left(\mathbf{x}_{t} \mid \mathbf{y}\right)=\prod_{t=1}^{A} \sum_{k=1}^{M} c_{k} N\left(\mathbf{x}_{t} ; \mathbf{m}_{k}+V_{k} \mathbf{y}, C_{k}\right)
$$

Two Identities

- Let $N(\mathbf{x} ; \mathbf{m}, C)$ denote the d-dimensional Gaussian pdf.
- Identity I Any Gaussian can be written as a Gaussian with respect to the mean

$$
N\left(\mathbf{x} ; \mathbf{m}_{1}+\mathbf{m}_{2}, C\right)=N\left(\mathbf{m}_{1} ; \mathbf{x}-\mathbf{m}_{2}, C\right)
$$

- Identity II The product of two Gaussians is also a (unnormalized) Gaussian

$$
\begin{aligned}
& N\left(A_{a \times d} \mathbf{x}_{d \times 1} ; \mathbf{m}_{1}, C_{1}\right) N\left(B_{b \times d} \mathbf{x} ; \mathbf{m}_{2}, C_{2}\right) \\
&=(2 \pi)^{-(a+b-d) / 2}\left(\frac{\left|C_{1}\right|\left|C_{2}\right|}{|D|}\right)^{-1 / 2} \cdot N(\mathbf{x} ; D \mathbf{d}, D) \\
& \cdot \exp \left[-\frac{1}{2}\left\{-d^{T} D \mathbf{d}+\mathbf{m}_{1}^{T} C_{1}^{-1} \mathbf{m}_{1}+\mathbf{m}_{2}^{T} C_{2}^{-1} \mathbf{m}_{2}\right\}\right] \\
& D_{d \times d}{ }^{-1}= A^{T} C_{1}^{-1} A+B^{T} C_{2}^{-1} B, D=D^{T} \\
& \mathbf{d}_{d \times 1}= A^{T} C_{1}^{-1} \mathbf{m}_{1}+B^{T} C_{2}^{-1} \mathbf{m}_{2}
\end{aligned}
$$

"One Gaussian" Assumption

- Assume that each vector in X_{A} was "generated" by only one Gaussian in the GMM

$$
\begin{aligned}
p\left(X_{A} \mid \mathbf{y}\right) & =\prod_{t=1}^{A} p\left(\mathbf{x}_{t} \mid \mathbf{y}\right)=\prod_{t=1}^{A} \sum_{k=1}^{M} c_{k} N\left(\mathbf{x}_{t} ; \mathbf{m}_{k}+V_{k} \mathbf{y}, C_{k}\right) \\
& \rightarrow \prod_{t=1}^{A} N\left(\mathbf{x}_{t} ; \mathbf{m}_{t}+V_{t} \mathbf{y}, C_{t}\right) \\
& =\prod_{t=1}^{A} N\left(V_{t} \mathbf{y} ; \mathbf{x}_{t}-\mathbf{m}_{t}, C_{t}\right)
\end{aligned}
$$

- How to decide which mixture?
- One way is to obtain $\mathbf{y}_{M L}$ via maximum likelihood estimation, which then fully describes all parameters in the GMM, then for each \mathbf{x}_{t} find the Gaussian with the maximum "occupation" probability

Iteratively Apply Identity II

- Apply Identity II to the first two pairs:

$$
\begin{aligned}
p\left(X_{A} \mid \mathbf{y}\right) & =\prod_{t=1}^{\prod_{\text {Apply Identity II }}^{A} N\left(V_{t} \mathbf{y} ; \mathbf{x}_{t}-\mathbf{m}_{t}, C_{t}\right)} \\
& =\underbrace{N\left(V_{1} \mathbf{y} ; \mathbf{x}_{1}-\mathbf{m}_{1}, C_{1}\right) \cdot N\left(V_{2} \mathbf{y} ; \mathbf{x}_{2}-\mathbf{m}_{2}, C_{2}\right)} \cdot N\left(V_{3} \mathbf{y} ; \mathbf{x}_{3}-\mathbf{m}_{3}, C_{3}\right) \cdots N\left(V_{A} \mathbf{y} ; \mathbf{x}_{A}-\mathbf{m}_{A}, C_{A}\right)
\end{aligned}
$$

- The result is $p(X \mid \mathbf{y})=(2 \pi)^{-(2 d-v) / 2}\left(\frac{\left|C_{1}\right|\left|C_{2}\right|}{\left|D_{2}\right|}\right)^{-1 / 2}$

$$
\begin{aligned}
& \cdot \exp \left\{-\frac{1}{2}\left[\left(-\mathbf{d}_{2}{ }^{T} D_{2} \mathbf{d}_{2}\right)+f_{2}\right]\right\} N_{\left(\mathbf{y} ; D_{2} \mathbf{d}_{2}, D_{2}\right)} \\
& \cdot N\left(V_{3} \mathbf{y} ; \mathbf{x}_{3}-\mathbf{m}_{3}, C_{3}\right) \cdots N\left(V_{A} \mathbf{y} ; \mathbf{x}_{A}-\mathbf{m}_{A}, C_{A}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{2}^{-1}=V_{1}^{T} C_{1}^{-1} V_{1}+V_{2}^{T} C_{2}^{-1} V_{2} \\
& \mathbf{d}_{2}=V_{1}^{T} C_{1}^{-1}\left(\mathbf{x}_{1}-\mathbf{m}_{1}\right)+V_{2}^{T} C_{2}^{-1}\left(\mathbf{x}_{2}-\mathbf{m}_{2}\right) \\
& f_{2}=\left(\mathbf{x}_{1}-\mathbf{m}_{1}\right)^{T} C_{1}^{-1}\left(\mathbf{x}_{1}-\mathbf{m}_{1}\right)+\left(\mathbf{x}_{2}-\mathbf{m}_{2}\right)^{T} C_{2}^{-1}\left(\mathbf{x}_{2}-\mathbf{m}_{2}\right)
\end{aligned}
$$

Iteratively Apply Identity II (cont'd)

- Keep going, and notice a pattern, resulting in

$$
p\left(X_{A} \mid \mathbf{y}\right)=\alpha\left(X_{A}\right) N\left(y ; D_{A} \mathbf{d}_{A}, D_{A}\right)
$$

where

$$
\begin{aligned}
\alpha\left(X_{A}\right)= & (2 \pi)^{-(A d-v) / 2}\left(\frac{1}{\left|D_{A}\right|} \prod_{t=1}^{A}\left|C_{t}\right|\right)^{-1 / 2} \\
& \cdot \exp \left\{\frac{1}{2}\left[\mathbf{d}_{A}^{T} D_{A} \mathbf{d}_{A}-\sum_{t=1}^{A}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right)^{T} C_{t}^{-1}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right)\right]\right\} \\
D_{A}^{-1}= & \sum_{t=1}^{A} V_{t}^{T} C_{t}^{-1} V_{t} \\
\mathbf{d}_{A}= & \sum_{t=1}^{A} V_{t}^{T} C_{t}^{-1}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right) \\
f_{A}= & \sum_{t=1}^{A}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right)^{T} C_{t}^{-1}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right)
\end{aligned}
$$

Expression for the Prior

- This also allows us to obtain a closed form solution for the pdf

$$
\begin{aligned}
p\left(X_{A}\right) & =\int_{-\infty}^{+\infty} p\left(X_{A} \mid \mathbf{y}\right) p(\mathbf{y}) d \mathbf{y} \\
& =\int_{-\infty}^{+\infty} \alpha\left(X_{A}\right) N\left(\mathbf{y} ; D_{A} \mathbf{d}_{A}, D_{A}\right) N(\mathbf{y} ; \mathbf{0}, I) d \mathbf{y} \\
& =\alpha\left(X_{A}\right) \beta\left(X_{A} \int_{-\infty}^{+\infty} N\left(\mathbf{y} ; J_{A} \mathbf{d}_{A}, J_{A}\right) d \mathbf{y}\right. \\
& =\alpha\left(X_{A}\right) \beta\left(X_{A}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\beta(X) & =(2 \pi)^{-v / 2}\left(\frac{\left|D_{A}\right|}{\left|J_{A}\right|}\right)^{-1 / 2} \exp \left\{\frac{1}{2}\left[\mathbf{d}_{A}{ }^{T} J_{A} \mathbf{d}_{A}-\mathbf{d}_{A}{ }^{T} D_{A} \mathbf{d}_{A}\right]\right\} \\
J_{A}{ }^{-1} & =D_{A}^{-1}+I
\end{aligned}
$$

The Closed-Form Utterance Comparison Model

- We have

$$
\begin{aligned}
P\left(H_{1} \mid X_{a}, X_{b}\right)= & \frac{1}{W} \frac{1}{p\left(X_{a}\right)} \frac{1}{p\left(X_{b}\right)} \int_{-\infty}^{\infty} p\left(X_{a} \mid \mathbf{y}\right) p\left(X_{b} \mid \mathbf{y}\right) p(\mathbf{y}) d \mathbf{y} \\
= & \frac{1}{W} \frac{1}{\alpha\left(X_{a}\right) \beta\left(X_{a}\right)} \frac{1}{\alpha\left(X_{b}\right) \beta\left(X_{b}\right)} \int_{-\infty}^{\infty} \alpha\left(X_{a}\right) \alpha\left(X_{b}\right) \\
& \left.N\left(\mathbf{y} ; D_{A} \mathbf{d}_{A}, D_{A}\right) N\left(\mathbf{y} ; D_{B} \mathbf{d}_{B}, D_{B}\right) N(\mathbf{y} ; \mathbf{0}, I)\right\rangle \mathbf{y}
\end{aligned}
$$

The Closed-Form Utterance Comparison Model

- Use Identity II again, simplify, and the final form is

$$
P\left(H_{1} \mid X_{A}, X_{B}\right)=\frac{1}{W}\left(\frac{\left|J_{A}\right|\left|J_{B}\right|}{|D|}\right)^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left\{-\mathbf{d}^{T} D \mathbf{d}+\mathbf{d}_{A}^{T} J_{A} \mathbf{d}_{A}+\mathbf{d}_{B}^{T} J_{B} \mathbf{d}_{B}\right\}\right]
$$

where

$$
\begin{aligned}
& D_{A}{ }^{-1}=\sum V_{A, t}{ }^{T} C_{A, t}{ }^{-1} V_{A, t} \\
& J_{A}{ }^{-1}=I+D_{A}{ }^{-1} \\
& \mathbf{d}_{A}=\sum_{t=1}^{A} V_{A, t}{ }^{T} C_{A, t}{ }^{-1}\left(\mathbf{x}_{A, t}-\mathbf{m}_{A, t}\right) \\
& D^{-1}=J_{A}{ }^{-1}+J_{B}{ }^{-1}-I \\
& \mathbf{d}=\mathbf{d}_{A}+\mathbf{d}_{B}
\end{aligned}
$$

- Hence, for each utterance, we need only $\left\{\mathbf{d}_{A}, J_{A}\right\}$ to compute the utterance comparison function.

Experiment Using CALLHOME Corpus

Table 1. Clustering accuracy for CALLHOME utterances

	Proposed	CLR	GLR	EV
$I_{\text {PUR }}$	86.82	85.50	83.70	48.60
$I_{\text {SPK }}$	81.97	74.21	64.06	64.24

- 680 phone conversations with the number of speakers ranging from 2 to 7 (more than half have 2)
- The features were 12 MFCC coefficients+E/D
- A harmonicity-based Voice Activity Detector was used to drop out nonspeech frames
- The eigenvoices were trained using PCA on MAP-adapted speakerdependent GMMs.
- Each GMM had 256 Gaussians, and the number of eigenvoices was set to 20.
- The cluster purity and speaker number accuracy were measured to evaluate performance

Extension of Model Including Eigenchannels

- Use both Eigenvoices and Eigenchannels

$$
\begin{gathered}
\mathbf{s}=\mathbf{m}+V \mathbf{y}+U \mathbf{z} \\
\mathbf{y} \square N[0, I], \mathbf{z} \square N[0, I] \\
{\left[\begin{array}{c}
\mathbf{s}_{1} \\
\mathbf{s}_{2} \\
\vdots \\
\mathbf{s}_{M}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\vdots \\
\mathbf{m}_{M}
\end{array}\right]+\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{M}
\end{array}\right] \mathbf{y}+\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{M}
\end{array}\right] \mathbf{z}}
\end{gathered}
$$

- We have

$$
\begin{aligned}
p(X \mid \mathbf{y}) & =\int_{-\infty}^{+\infty} p(X, \mathbf{z} \mid \mathbf{y}) d \mathbf{z}=\int_{-\infty}^{+\infty} p(X \mid \mathbf{y}, \mathbf{z}) p(\mathbf{z} \mid \mathbf{y}) d \mathbf{z}=\int_{-\infty}^{+\infty} p(X \mid \mathbf{y}, \mathbf{z}) p(\mathbf{z}) d \mathbf{z} \\
p(X \mid \mathbf{y}, \mathbf{z}) & =\prod_{t=1}^{A} p\left(\mathbf{x}_{t} \mid \mathbf{y}, \mathbf{z}\right)=\prod_{t=1}^{A} N\left(\mathbf{x}_{t} ; \mathbf{m}_{t}+V_{t} \mathbf{y}+U_{t} \mathbf{z}, C_{t}\right) \\
& =\prod_{t=1}^{A} N\left(U_{t} \mathbf{z} ; \mathbf{x}_{t}-\left(\mathbf{m}_{t}+V_{t} \mathbf{y}\right), C_{t}\right)
\end{aligned}
$$

The Extended Closed-Form Utterance Comparison Model

- After a bold investment of masochistic man-hours, we can obtain

$$
P\left(H_{1} \mid X_{a}, X_{b}\right)=\frac{1}{W}\left(\frac{\left|H_{A}\right|\left|H_{B}\right|}{|G|}\right)^{-1 / 2} \exp \left[-\frac{1}{2}\left\{-\mathbf{g}^{T} G \mathbf{g}+\mathbf{g}_{A}{ }^{T} H_{A} \mathbf{g}_{A}+\mathbf{g}_{B}^{T} H_{B} \mathbf{g}_{B}\right\}\right]
$$

where

$$
\begin{array}{ll}
D_{A}^{-1}=\sum_{t=1}^{A} V_{t}^{T} C_{t}^{-1} V_{t}, D_{A}^{T}=D_{A} & \mathbf{d}_{A(v \times 1)}=\sum_{t=1}^{A} V_{t}^{T} C_{t}^{-1}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right) \\
E_{A}^{-1} \square \sum_{t=1}^{A} U_{t}^{T} C_{t}^{-1} U_{t}, E_{A}^{T}=E_{A} & \mathbf{e}_{A(u \times 1)} \square \sum_{t=1}^{A} U_{t}^{T} C_{t}^{-1}\left(\mathbf{x}_{t}-\mathbf{m}_{t}\right) \\
F_{A} \square \sum_{t=1}^{A} U_{t}^{T} C_{t}^{-1} V_{t} & \mathbf{g}_{A}=\mathbf{d}_{A}-F_{A}^{T} K_{A} \mathbf{e}_{A} \\
K_{A}^{-1}=E_{A}^{-1}+I, K_{A}^{T}=K_{A} & \mathbf{g}=\mathbf{g}_{A}+\mathbf{g}_{B} \\
H_{A}^{-1}=D_{A}^{-1}-F_{A}^{T} K_{A} F_{A}+I, H_{A}^{T}=H_{A} & \\
G^{-1}=H_{A}{ }^{-1}+H_{B}{ }^{-1}-I &
\end{array}
$$

- Using this form with Eigenchannels improved the accuracy of the CALLHOME task by one or two percent points

The End

- Questions?

