



### Clustering of Bootstrapped Acoustic Model with Full Covariance

#### Xin Chen<sup>1</sup>, Xiaodong Cui<sup>2</sup>, Jian Xue<sup>2</sup>, Peder Olsen<sup>2</sup>, John

#### Hershey<sup>3</sup>, Bowen Zhou<sup>2</sup> and Yunxin Zhao<sup>1</sup>

Prague, Czech Republic

5.26.2011



SLIPL Lab, University of Missouri<sup>1</sup>

IBM T. J. Watson Research Center<sup>2</sup>

Mitsubishi Electric Research Laboratories<sup>3</sup>

© 2011 IBM Corporation

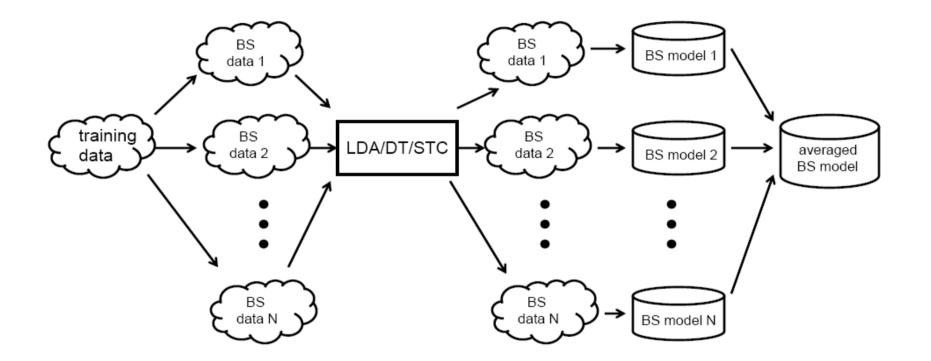


### Outline

- Overview of Bootstrap and Restructuring (BSRS) acousticmodeling
- Motivation
  - Why clustering?
  - Why full covariance?
- How to do the clustering?
  - Distance (similarity) measurements Investigated
    - Entropy, KL, Bhattacharyya, Bayes error, Chernoff
  - Clustering Algorithms proposed and Investigated
    - N-Best distance Refinement (NBR)
    - Global optimization
    - Model structure optimization
- Experimental results on proposed clustering methods
- Experimental results on BSRS with full covariance
- Future extensions

#### IBM

#### **Bootstrap Based Acoustic Modeling**

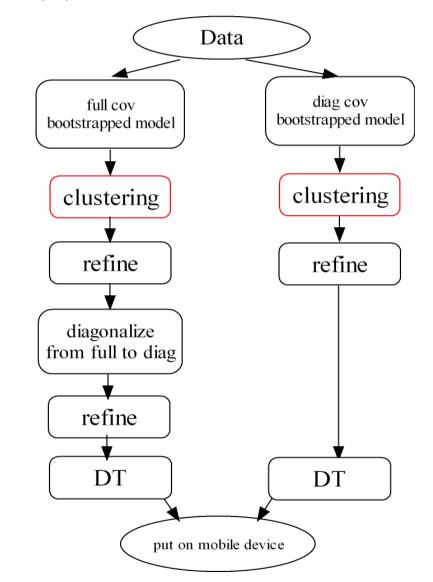


- Bootstrap the original training data S into N subsets  $\{S_1, S_2, \cdots, S_N\}$  without replacement.
- Each subset covers a fraction of the original data  $S_i = r \cdot |S|$ .
- Combine all the subsets for training of LDA, decision tree and STC (therefore shared LDA/DT/STC and single graph in decoding).
- Perform EM training in parallel on N subsets for N HMMs.



### Bootstrap and Restructuring (BSRS) with full covariance (1)

- Aggregated N BS Acoustic model
  - Performs very well
  - Too Large and restructuring is needed
- 1. BS+Diag strategy
  - Train diagonal covariance model in all steps
- 2. BS+Full → Diag strategy
  - Keep all the info until the last step
  - Train full covariance up to the last steps
    - Full covariance clustering needed



#### IBM

# Bootstrap and Restructuring (BSRS) with full covariance(2)

- Clustering is a critical step
  - Remove the redundancy
  - Scale down the model (able to put on mobile device)
  - Flexible
    - Train large model and scale down to desirable size
  - Full covariance clustering
    - Needed for BS+Full  $\rightarrow$  Diag strategy

#### **Distance Measurements for Clustering (1)**

#### Entropy

• measures the change of entropy after two distributions are merged

#### • KL divergence

• KL divergence

$$D_{\rm kl}(f_1 \parallel f_2) = \int f_1(x) {\rm log} \frac{f_1(x)}{f_2(x)} dx$$

• Symmetric KL divergence

$$D_{\rm kls}(f_1 \parallel f_2) = \int \left[ f_1(x) \log \frac{f_1(x)}{f_2(x)} + f_2(x) \log \frac{f_2(x)}{f_1(x)} \right] dx$$

• Bhattacharyya

$$D_{\text{bhat}}(f_1 \parallel f_2) = \int \sqrt{f_1(x), f_2(x)} dx$$

### **Distance Measurements for Clustering (2)**

- Bayes error  $D_{\text{bayes}}(f_1 || f_2) = \int \min(f_1(x), f_2(x)) dx$ 
  - measures the overlap of two distributions.
  - No closed-form even for multivariate Gaussians.
  - A variational approach is applied based on the Chernoff distance.
- Chernoff distance
  - Chernoff function can be viewed as variational way to measure the Bayes error, the Chernoff distance is defined as

$$D_{\text{chern}}(f_1 \parallel f_2) = \operatorname*{argmin}_{0 \le s \le 1} \int f_1(x)^s f_2(x)^{1-s} dx$$

• Note that the Bhattacharyya is Chernoff function with s =0.5

#### **Distance Measurements for Clustering (3)**

#### • Chernoff distance (Details elaborated in [2])

Let  $c(s) = \log C(s)$ , which can be computed as

$$c(s) = \log Z(s\theta_1 + (1-s)\theta_2) - s\log Z(\theta_1) - (1-s)\log Z(\theta_2)$$

c(s) is a convex function of S. Apply Newton-Raphson algorithm

$$s_{k+1} = s_k - \frac{c'(s)}{c''(s)}$$
  
where  $c'(s) = \log \frac{Z(\theta_2)}{Z(\theta_1)} + \sum_{i=1}^n \left[ \frac{u_i v_i + s u_i^2 - \frac{1}{2} \xi_i}{1 + s \xi_i} - \frac{\frac{1}{2} \xi_i (v_i + s u_i)^2}{(1 + s \xi_i)^2} \right]$   
 $c''(s) = \sum_{i=1}^n \left[ \frac{u_i^2}{1 + s \xi_i} - \frac{2\xi_i u_i v_i + 2s \xi_i u_i^2 - \frac{1}{2} \xi_i^2}{(1 + s \xi_i)^2} + \frac{\xi_i^2 (v_i + s u_i)^2}{(1 + s \xi_i)^3} \right]$ 

also has an analytical form for a derivative free approach.

$$c(s) = -\frac{1}{4}s(1-s)(\mu_1 - \mu_2)^{\mathsf{T}} \left[ (1-s)\Sigma_1^{-1} + s\Sigma_2^{-1} \right] (\mu_1 - \mu_2) - \frac{1}{2}\log\left[ \frac{|(1-s)\Sigma_1 + s\Sigma_2|}{|\Sigma_1|^{(1-s)} + |\Sigma_2|^{(s)}} \right]$$

### **Outline of Investigated Algorithms**

- Investigated Algorithms
- Bottom-up
  - Greedy
    - N-Best distance Refinement
      - To improve the speed
  - Non-Greedy
    - K-step look ahead
    - Search the best path
      - For global optimization
- 2-Pass strategy to improve model structure



#### **Bottom-up Approaches**

$$f(x) = \sum_{i=1}^{M} w_i \mathcal{N}(x; \mu_i, \Sigma_i) \quad \text{where} \quad M = \sum_{i=1}^{T} K_i$$
$$g(x) = \sum_{i=1}^{N} w_i \mathcal{N}(x; \mu_i, \Sigma_i)$$

- bottom-up strategy
  - every time the two most similar Gaussians [Gaussian f<sub>a</sub> and Gaussian f<sub>b</sub>] are combined to one under certain criterion.

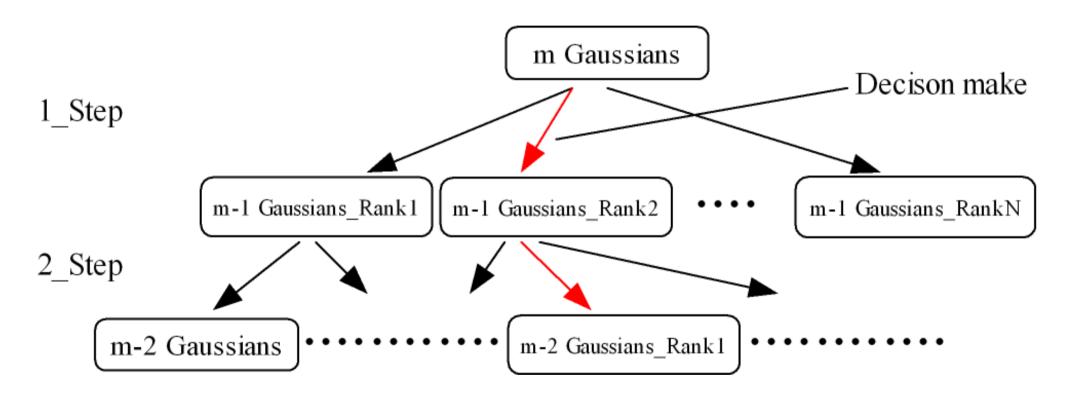
$$D(f,g) = \sum_{i=1}^{M-N} Distance_i(f_a, f_b)$$

- Minimize *Distance<sub>i</sub>*(f<sub>a</sub>, f<sub>b</sub>) (Greedy)
- Minimize D(f,g) (Global optimization) [**Our Target**]

#### IBM

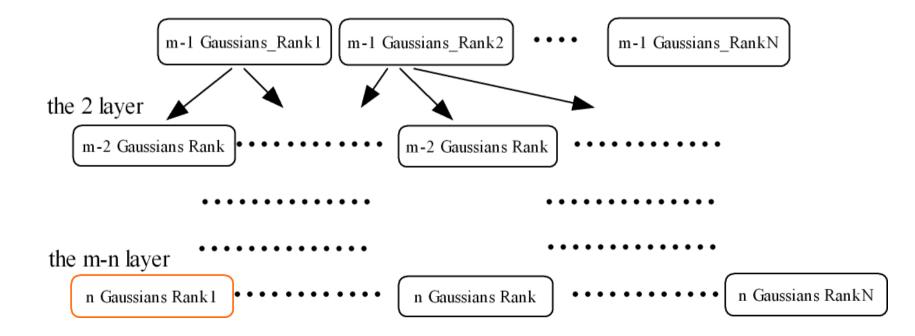
### **Global Optimization (1)**

• K-step Look Ahead(KLA)



### **Global Optimization (2)**

- Search the optimized path
  - Breadth First Search (BFS), when beam is set to N
    - Keep N candidates at each layer
    - Extend to next layer from N candidates



#### IBM

#### 2-Pass Model Structural Refinement

- Original approach  $S_i^{new} = S_i * \frac{N}{M}$ 
  - Every state has the same compression rate
- Every state can have a variable compression rate.
  - 2-Pass  $(S_i * \frac{N}{M}) K, .., S_i * \frac{N}{M}, .., (S_i * \frac{N}{M}) + K$
  - A Criteria is used to decide the compression rate from the candidates.
    - Bayesian Information Criteria [3]
    - Fixed BIC for all states, different compression rate.

Let  $S = s_1, s_2, ..., s_k$  be the current k cluster GMM, suppose we combine  $s_1, s_2$  to  $s'_1$ . then we will have  $S' = s'_1, ..., s_k$ . The change from S to S' if measured with BIC

$$= -(w_1 + w_2) \cdot \log |\Sigma| + w_1 \cdot \log |\Sigma_1| + w_2 \cdot \log |\Sigma_2| + N(d + 0.5 * d(d + 1))$$

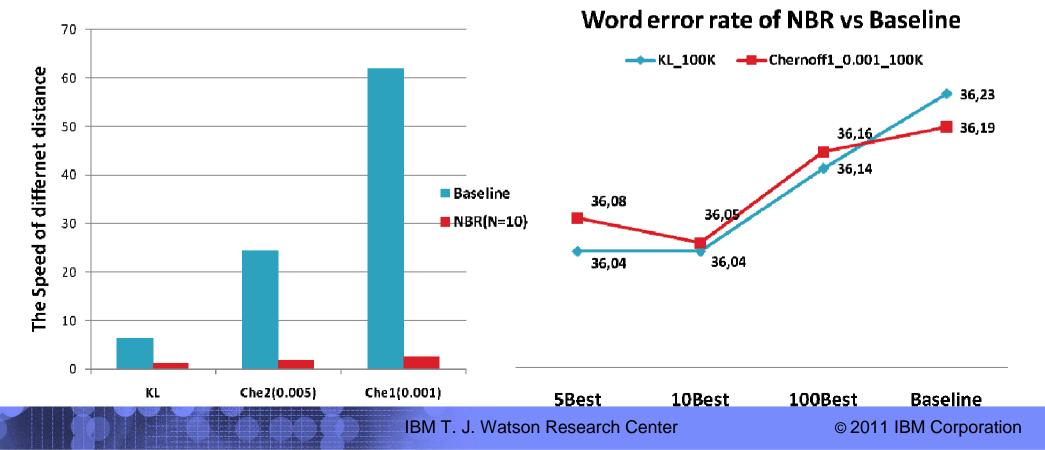
• Entropy

#### **Experiments: ASR Setup**

- Pashto data set(from TRANSTAC)
  - 135 hours of training data
  - 24 dimension PLP features
  - Speaker independent
  - Test set: 6896 sentences (10 hours)
  - Both training and testing data are spontaneous speech
  - 15 Bootstrapped model has 6K states and total 1.8M Gaussians
    - This big model has a WER of 35.46%

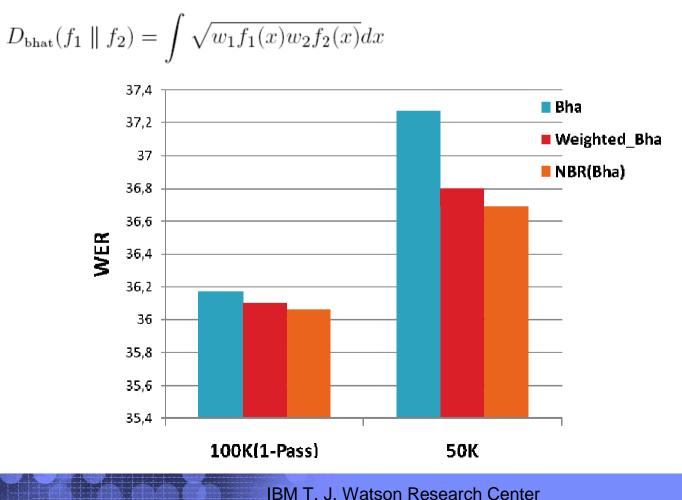
#### N-Best Distance Refinement (NBR)

- Chernoff and KL distance measures are slow to obtain
- Entropy (ENT) is fast and effective
  - Using ENT to find the N best candidate pairs
  - Using Chernoff/KL to recalculate the distances



#### Weighted Distances

- The improvement in NBR suggest a weighted distance can be a potential improvement, as proposed in [4].
  - Evaluated on Weighted Bhatharraya distance



| K    |       |  |
|------|-------|--|
| <br> | = * : |  |

### **Results for Global Optimization**

| 100K              | Baseline | 2-step LA(10) | Search(2_4_8) |
|-------------------|----------|---------------|---------------|
| ENT Speed         | 1X       | 6.7X          | 23.8X         |
| ENT_State0_D(f,g) | 3336.8   | 3336.76       | 3299.04       |

| WED 100K tost | Dacalina | NDD   | 2 stop I A | Coarch |
|---------------|----------|-------|------------|--------|
| WER 100K test | Baseline | NBR   | 2-step LA  | Search |
| KL            | 36.23    | 36.04 | 36.11      | 36.14  |
| ENT           | 36.11    | N/A   | 36.08      | 36.08  |
| Chernoff      | 36.19    | 36.05 | N/A        | N/A    |

| WER 50K test | Baseline | NBR   | 2-step LA | Search |
|--------------|----------|-------|-----------|--------|
| KL           | 37.27    | 36.68 | N/A       | 37.27  |
| ENT          | 36.77    | N/A   | 36.81     | 36.6   |
| Chernoff     | 37.33    | 36.79 | N/A       | N/A    |

### **Results for 2-Pass Structural Optimization**

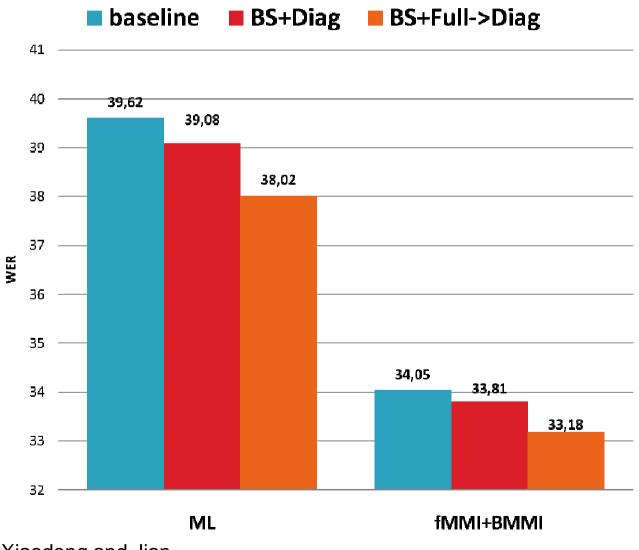
Criteria for 2-Pass:

Find a threshold that Keep the clustered number of Gaussian is exactly the same as the 100K 1-pass model for a fair comparing

| 1-Pass (100K) | Baseline | NBR   | 2-step LA |
|---------------|----------|-------|-----------|
| KL            | 36.23    | 36.04 | 36.11     |
| ENT           | 36.11    | N/A   | 36.08     |
| Chernoff      | 36.19    | 36.05 | N/A       |
|               |          |       |           |
| 2-Pass (100K) | Baseline | NBR   | 2_step_LA |
| KL            | 36.18    | 36.02 | 36.04     |
| ENT           | 36.04    | N/A   | 36.04     |
| Chernoff      | 36.12    | 35.98 | N/A       |

#### From Full to Diagonal Comparison Results

WER Improvement over the 3 cases



Results are obtained by Xiaodong and Jian

#### **Possible Future Extensions**

- Search based
  - Auto adaptive beam
    - Beam can be based on a threshold
- K-step look ahead & Search optimize path
  - General approach can be extend to other similar tasks
    - Decision tree
- 2-Pass model structure optimization
  - Alternative criteria can be tried
    - MDL



#### References

[1] X. Cui, J. Xue, et. al., "Acoustic modeling with bootstrap and restructuring for low resourced languages," Proc.Interspeech, pp.291-294, 2010.

[2] X. Cui, et. al., "Acoustic modeling with bootstrap and restructuring based on full covariance", Submitted to Interspeech 2011.

[3] Scott Chen, Gopalakrishnan, P.S., "Clustering via the Bayesian information criterion with applications in speech recognition," Proc. ICASSP, pp.645-648, 1998.

[4] Ogawa, A. and Takahashi, S. ,"Weighted distance measures for efficient reduction of Gaussian mixture components in HMMbased acoustic model," Proc. ICASSP, pp.4173-4176, 2008.



### Thanks for your attention

## Any questions?

© 2011 IBM Corporation