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Outline

� Overview of Bootstrap and Restructuring (BSRS) acousticmodeling
� Motivation 

� Why clustering?

� Why full covariance?

� How to do the clustering?

� Distance (similarity) measurements Investigated

� Entropy, KL, Bhattacharyya, Bayes error, Chernoff

� Clustering Algorithms proposed and Investigated

� N-Best distance Refinement (NBR)

� Global optimization 

� Model structure optimization

� Experimental results on proposed clustering methods

� Experimental results on BSRS with full covariance

� Future extensions 
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Bootstrap Based Acoustic Modeling 

� Bootstrap the original training data      into      subsets     without replacement.

� Each subset covers a fraction of the original data              .

� Combine all the subsets for training of LDA, decision tree and STC (therefore shared 

LDA/DT/STC and single graph in decoding).

� Perform EM training in parallel on     subsets for     HMMs. 
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Bootstrap and Restructuring (BSRS) with 
full covariance (1)

� Aggregated N BS Acoustic model

� Performs very well

� Too Large and restructuring is needed

� 1. BS+Diag strategy

� Train diagonal covariance model in all 

steps

� 2. BS+Full�Diag strategy

� Keep all the info until the last step

� Train full covariance up to the last 

steps

� Full covariance clustering needed
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Bootstrap and Restructuring (BSRS) with 
full covariance(2)

� Clustering is a critical step

� Remove the redundancy

� Scale down the model (able to put on mobile device)

� Flexible

� Train large model and scale down to desirable size

� Full covariance clustering

� Needed for BS+Full�Diag strategy
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Distance Measurements for Clustering (1)

� Entropy
� measures the change of entropy after two distributions are merged

� KL divergence 
� KL divergence

� Symmetric KL divergence

� Bhattacharyya 
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� Bayes error

� measures the overlap of two distributions.

� No closed-form even for multivariate Gaussians.   

� A variational approach is applied based on the Chernoff distance.   

� Chernoff distance

� Chernoff function can be viewed as variational way to measure the 

Bayes error, the Chernoff distance is defined as

� Note that the Bhattacharyya is Chernoff function with s =0.5

Distance Measurements for Clustering (2)
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� Chernoff distance (Details elaborated in [2])

Let                        , which can be computed as   

is  a convex function of     .   Apply Newton-Raphson algorithm   

where   

also has an analytical form for a derivative free approach.

Distance Measurements for Clustering (3)
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Outline of Investigated Algorithms

� Investigated Algorithms

� Bottom-up 

� Greedy 

� N-Best distance Refinement
� To improve the speed

� Non-Greedy

� K-step look ahead

� Search the best path
� For global optimization

� 2-Pass strategy to improve model structure
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Bottom-up Approaches

� bottom-up strategy 

� every time the two most similar Gaussians [Gaussian fa and 

Gaussian fb] are combined to one under certain criterion.

� Minimize Distance
i
(fa, fb) (Greedy)

� Minimize D(f,g) (Global optimization) [Our Target]

where
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Global Optimization (1)

� K-step Look Ahead(KLA)
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Global Optimization (2)

� Search the optimized path

� Breadth First Search (BFS), when beam is set to N

� Keep N candidates at each layer

� Extend to next layer from N candidates
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2-Pass Model Structural Refinement

� Original approach

� Every state has the same compression rate

� Every state can have a variable compression rate.

� 2-Pass

� A Criteria is used to decide the compression rate from the candidates.  

� Bayesian Information Criteria [3]

� Fixed BIC for all states, different compression rate.

� Entropy
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Experiments: ASR Setup

� Pashto data set(from TRANSTAC)

� 135 hours  of training data

� 24 dimension PLP features

� Speaker independent

� Test set: 6896 sentences  (10 hours)

� Both training and testing data are spontaneous speech

� 15 Bootstrapped model has 6K states and total 1.8M Gaussians

� This big model has a WER of 35.46%
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N-Best Distance Refinement (NBR)

� Chernoff and KL distance measures are slow to obtain

� Entropy (ENT) is fast and effective

� Using ENT to find the N best candidate pairs

� Using Chernoff/KL to recalculate the distances
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Weighted Distances

� The improvement in NBR suggest a weighted distance can 

be a potential improvement, as proposed in [4].

� Evaluated on Weighted Bhatharraya distance
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Results for Global Optimization

WER 100K test Baseline NBR 2-step LA Search

KL 36.23 36.04 36.11 36.14

ENT 36.11 N/A 36.08 36.08

Chernoff 36.19 36.05 N/A N/A

WER 50K test Baseline NBR 2-step LA Search

KL 37.27 36.68 N/A 37.27

ENT 36.77 N/A 36.81 36.6

Chernoff 37.33 36.79 N/A N/A

100K Baseline 2-step LA(10) Search(2_4_8)

ENT Speed 1X 6.7X 23.8X

ENT_State0_D(f,g) 3336.8 3336.76 3299.04
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Results for 2-Pass Structural Optimization

1-Pass (100K) Baseline NBR 2-step LA

KL 36.23 36.04 36.11

ENT 36.11 N/A 36.08

Chernoff 36.19 36.05 N/A

2-Pass (100K) Baseline NBR 2_step_LA

KL 36.18 36.02 36.04

ENT 36.04 N/A 36.04

Chernoff 36.12 35.98 N/A

Criteria for 2-Pass: 
Find a threshold that Keep the clustered number of Gaussian is exactly 
the same as the 100K 1-pass model for a fair comparing
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From Full to Diagonal Comparison Results

Results are obtained by Xiaodong and Jian
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Possible Future Extensions

� Search based

� Auto adaptive beam 

� Beam can be based on a threshold

� K-step look ahead & Search optimize path

� General approach can be extend to other similar tasks

� Decision tree

� 2-Pass model structure optimization

� Alternative criteria can be tried 

� MDL



IBM T. J. Watson Research Center © 2011 IBM Corporation

References

[1] X. Cui, J. Xue, et. al.,“Acoustic modeling with bootstrap and restructuring for 
low resourced languages,” Proc.Interspeech, pp.291-294, 2010.
[2] X. Cui, et. al.,“Acoustic modeling with bootstrap and restructuring based on 
full covariance”, Submitted to Interspeech 2011.
[3] Scott Chen, Gopalakrishnan, P.S.,“Clustering via the Bayesian information 
criterion with applications in speech recognition,” Proc. ICASSP, pp.645-648, 
1998.
[4] Ogawa, A. and Takahashi, S. ,“Weighted distance measures for efficient 
reduction of Gaussian mixture components in HMMbased acoustic model,”
Proc. ICASSP, pp.4173-4176, 2008.



IBM T. J. Watson Research Center © 2011 IBM Corporation

Thanks for your attention

Any questions?


