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Outline

o Overview of Bootstrap and Restructuring (BSRS) acousticmodeling
o Motivation

e Why clustering?
e Why full covariance?

o How to do the clustering?

o Distance (similarity) measurements Investigated

o Entropy, KL, Bhattacharyya, Bayes error, Chernoff
e Clustering Algorithms proposed and Investigated

o N-Best distance Refinement (NBR)
o Global optimization
e Model structure optimization

o Experimental results on proposed clustering methods
o Experimental results on BSRS with full covariance
o Future extensions




Bootstrap Based Acoustic Modeling
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 Bootstrap the original training data S into N subsets {S;,S5,---,SyWithout replacement.

« Each subset covers a fraction of the original data 5, =+ . |5| .

e Combine all the subsets for training of LDA, decision tree and STC (therefore shared
LDA/DT/STC and single graph in decoding).

e Perform EM training in parallel on N subsets for N HMMs.
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Bootstrap and Restructuring (BSRS) with
full covariance (1)

o Aggregated N BS Acoustic model
gereg

e Performs very well p
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o Train diagonal covariance model in all — N 2
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o 2. BS+Full=> Diag strategy diagonalize J
from full to diag
o Keep all the info until the last step v
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e Train full covariance up to the last i y
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e Full covariance clustering needed
put on mobile device




Bootstrap and Restructuring (BSRS) with
full covariance(2)

e Clustering is a critical step

e Remove the redundancy
e Scale down the model (able to put on mobile device)

o Flexible
o Train large model and scale down to desirable size

o Full covariance clustering

e Needed for BS+Full->Diag strategy




Distance Measurements for Clustering (1)

o Entropy
e Mmeasures the change of entropy after two distributions are merged

o KL divergence
e KL divergence

B o filz)
Du(fil ) = [ fia)os s
o Symmetric KL divergence
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e Bhattacharyya
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Distance Measurements for Clustering (2)

e Bayes error D,..(f1| f2) = fmm(fl( r), f2(x))da

e measures the overlap of two distributions.
e No closed-form even for multivariate Gaussians.

o A variational approach is applied based on the Chernoff distance.

o Chernoff distance

e Chernoff function can be viewed as variational way to measure the
Bayes error, the Chernoff distance is defined as

D ern (f1 || f2) —argm1n/f1 *fo(z)! Sdw

0<s<1

o Note that the Bhattacharyya is Chernoff function with s =0.5




Distance Measurements for Clustering (3)

e Chernoff distance (Details elaborated in [2])

Let c(s) =logC(s), which can be computed as
c(s) =log Z (s + (1 — s)f2) — slog Z(01) — (1 — s) log Z(6-)

c(s) is a convex function of S. Apply Newton-Raphson algorithm
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also has an analytical form for a derivative free approach.
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Outline of Investigated Algorithms

e Investigated Algorithms

o Bottom-up
e Greedy

e N-Best distance Refinement
e To improve the speed

e Non-Greedy

o K-step look ahead
o Search the best path

o For global optimization

o 2-Pass strategy to improve model structure




Bottom-up Approaches

M

T
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i=1
e bottom-up strategy

o every time the two most similar Gaussians [Gaussian f. and
Gaussian fv] are combined to one under certain criterion.

M-—N

D) = E Distance;( fa. fv)
t—1

o Minimize Distancefs, fv) (Greedy)
e Minimize D(f,g) (Global optimization) [Our Target]




Global Optimization (1)

o K-step Look Ahead(KLA)
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Global Optimization (2)

o Search the optimized path
e Breadth First Search (BFS), when beam is set to N

o Keep N candidates at each layer
o Extend to next layer from N candidates
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2-Pass Model Structural Refinement

o Original approach S7* =S,
o Every state has the same compression rate
e Every state can have a variable compression rate.
e 2Pass  (Six ) K, SN (S N+ K
e A Criteria is used to decide the compression rate from the candidates.

o Bayesian Information Criteria [3]
o Fixed BIC for all states, different compression rate.

Let S = s1,89,...5; be the current k cluster GMM, suppose we combine sq, sy to s, then we
will have 8" = s, ...s;. The change from S to S’ if measured with BIC

= — (w1 +wa) -log |Z] + w1 - log |E1] + w2 - log |Ea| + N(d + 0.5 = d(d + 1))

o Entropy




Experiments: ASR Setup

e Pashto data set(from TRANSTAC)

e 135 hours of training data

e 24 dimension PLP features

e Speaker independent

e Test set: 6896 sentences (10 hours)

e Both training and testing data are spontaneous speech

o 15 Bootstrapped model has 6K states and total 1.8M Gaussians
o This big model has a WER of 35.46%




The Speed of differnet distance

N-Best Distance Refinement (NBR)

e Chernoff and KL distance measures are slow to obtain
e Entropy (ENT) is fast and effective

e Using ENT to find the N best candidate pairs
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e Using Chernoff/KL to recalculate the distances
Word error rate of NBR vs Baseline
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Weighted Distances

o The improvement in NBR suggest a weighted distance can
be a potential improvement, as proposed in [4].

o Evaluated on Weighted Bhatharraya distance
Duslfi | f2) = [ Vit FiGwafa(e)da
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Results for Global Optimization

ENT Speed
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Results for 2-Pass Structural Optimization

Criteria for 2-Pass:
Find a threshold that Keep the clustered number of Gaussian is exactly
the same as the 100K 1-pass model for a fair comparing

1-Pass (100K) Baseline NBR 2-step LA
KL 36.23 36.04 36.11
ENT 36.11 N/A 36.08
Chernoff 36.19 36.05 N/A
2-Pass (100K) Baseline NBR 2 step LA
KL 36.18 36.02 36.04
ENT 36.04 N/A 36.04
Chernoff 36.12 35.98 N/A




From Full to Diagonal Comparison Results

WER Improvement over the 3 cases
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Results are obtained bi Xiaodoni and Jian




Possible Future Extensions

e Search based
e Auto adaptive beam

e Beam can be based on a threshold

o K-step look ahead & Search optimize path
e General approach can be extend to other similar tasks

e Decision tree
e 2-Pass model structure optimization

e Alternative criteria can be tried
e MDL
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Thanks for your attention

Any questions?




