

UT-Scope: Towards LVCSR Under Lombard Effect Induced by Varying Types and Levels of Noisy Background

Hynek Boril and John H.L. Hansen

Center for Robust Speech Systems (CRSS) Erik Jonsson School of Engineering & Computer Science Department of Electrical Engineering University of Texas at Dallas Richardson, Texas 75083-0688, U.S.A.

ICASSP 2011 May 22-27, 2011 Prague, Czech Republic

Slide 1

Introduction

- ♦ UT-Scope Database
- Speech Production Under Lombard Effect (LE)

Slide 2

- Modified RASTA Filter for ASR
- QCN_RASTA Normalization
- LVCSR Evaluation
- Conclusions

What is Lombard Effect?

- ♦ Communication in noisy environments → speakers adjust their speech production in effort to maintain intelligible communication (= Lombard effect, LE)
- LE is represented by increase of vocal effort, increase of pitch, shifts of low formants, formant bandwidth reduction, spectral slope flattening, ...
- ♦ ASR acoustic models trained typically on neutral speech → ASR deterioration in LE (mismatch between acoustic models and LE speech parameters)

Objective

- Previous ASR studies mostly focused on LE in small vocabulary tasks
 - \rightarrow Focus on LE in large vocabulary continuous speech data
- Analysis of LE speech production in UT-Scope database
- Proposal of temporal filtering strategy derived from RASTA
- Evaluation of state-of-the-art front-end compensations in LVCSR under LE

Slide 3

ICASSP

- ♦ UT-Scope: Speech produced under cognitive and physical stress, emotions, and LE
- ♦ Lombard portion: 58 subjects (31 native speakers of US English 25 F, 6 M)
- Neutral (clean) and simulated noisy conditions
- Noisy conditions: background noise samples produced through open-air headphones
- Three types of noise car (65 mph on highway, windows half open), large crowd, pink
- Noises produced to subjects at 70, 80, and 90 dB SPL (car, crowd) and 65, 75, 85 dB SPL (pink)
- Recording in ASHA certified sound booth
- ♦ 3 microphone channels throat mic, close-talk, and far-field mic

Content

ICASSP

- ♦ 100 phonetically balanced read sentences from TIMIT neutral (clean) conditions
- ♦ 20 TIMIT sentences read per each of 9 noise type/level conditions
- ♦ Digit strings 5 repetitions of 10-digit strings per each condition
- Spontaneous speech: ~1 minute per condition describing content of a picture

Slide 4

- ♦ Focus on TIMIT-like sentences recorded by close-talk channel
- Parameters analyzed:
 - Signal-to-noise ratio (SNR) related to vocal intensity
 - Mean fundamental frequency (F0)
 - Vowel formant frequencies
 - Vowel durations
 - Cepstral distributions
- Extraction tools:
 - WaveSurfer (F0, formants)
 - Segmental SNR estimation tool (CTU in Prague)
 - HTK forced alignment (vowel boundaries in formant analysis, vowel durations)

- CTU Copy – extraction of cepstral features

Subjects increase vocal effort with the level of noise; **observed LF slopes** here **0–0.3**

Slide 6

Mean Fundamental	Frequency	(F0)
------------------	-----------	------

	HWY (dB)			CRD (dB)			PNK (dB)		
Gend	70	80	90	70	80	90	65	75	85
F	a=0.92 MS	38, $R^2 = SE = 0.0$	0.999 68	a=0.8 M.	08, $R^2 = SE = 0.0$:0.998 83	$a=0.596, R^2=0.98$ MSE=0.380		0.984 80
М	a=1.19 MS	95, $R^2 = SE = 0.02$	1.000 39	$a=1.073, R^2=1.000$ MSE=0.011		$a=0.786, R^2=0.962$ MSE=1.634		0.962 34	

- Correlation analysis between noise presentation level (in dB) and mean F0 across all recordings in that noise level
- a slope of the regression line in the noise level/F0 plane; R² correlation coefficient;
 MSE mean square error
- Solution Consistent F0 increase with the level of noise; steepest for car noise
- ♦ R², MSE strong correlation between the level of noise and speech intensity (hwy, pnk)

Email: {hynek, John.Hansen}@utdallas.edu

ICASSP

- ♦ Vowel segment boundaries estimated through forced alignment
- Systematic shift of vowels in F1-F2 space with increasing noise level

Vowel Durations

Phone

- ♦ Vowel segments estimated through forced alignment
- Solution Increasing trend in some vowel durations, not statistically significant (95% Cl's)

Slide 9

ICASSP Moy 22-27, 2011 Proge Creek Republic Email: {hynek, John.Hansen}@utdallas.edu

- Speech production variations in LE direct impact on ASR features (here c0, c1 in MFCC) these plots are for clean speech signal (high SNR)
- Channel differences another source of mismatch compare TIMIT and CLN00

Email: {hynek, John.Hansen}@utdallas.edu

May 22-27, 2011 Prague

- RASTA- band-pass filtering in log-spectral or cepstral domain; elimination of slowvarying components (including DC) and components varying faster than expected for speech
- RASTA is popular in ASR and speaker ID as it increases robustness to channel variations, reverberation, and noise
- Original RASTA filter high order IIR band-pass filter introduces transient distortions in the feature tracks

Proposed Modification

- RASTA can be approximated by a combination of cepstral mean normalization (CMN) and a low-pass filter, i.e., by distribution normalization & temporal filtering
 decomposition of RASTA into two blocks
 - \rightarrow low-pass requires lower order filter \rightarrow reduced transient effects
 - \rightarrow allows for replacement of first block (CMN) by more powerful normalizations

Slide 11

Proposed Low-Pass

- ♦ 2nd order low-pass IIR filter (Butterworth approximation)
- Transfer function is smooth eliminates the residual side lobe of original RASTA

Email: {hynek, John.Hansen}@utdallas.edu

May 22-27, 2011 Prague

- QCN aligns dynamic ranges rather than means of cepstral distributions found to ٨ provide better normalization of distributions with different skewness due to noise & LE
- QCN_RASTA QCN (replacing CMN) + proposed low-pass filter \bigotimes

- ♦ ASR system:
 - acoustic model triphone HMM's, 32 mixtures (HTK); trained on clean TIMIT
 - language model SRI LM Toolkit
 - TIMIT acoustic models adapted towards UT-Scope using MLLR and MAP; adapt set -
 - 9 UT-Scope sessions (excluded from open test set)
 - clean test set 3 male and 9 female subjects, 1 neutral and 9 simulated noisy conditions per subject
 - noisy test set neutral speech and speech produced in 90 dB of highway noise both mixed with NOISEX'92 Volvo noise at 5 dB and 15 dB SNR (3 M, 9 F)
- Baseline ASR performance on clean neutral test set
 - MFCC-CVN front-end: 8.3% WER
 - PLP-CVN front-end: 8.9% WER
 - All following results reported for $\ensuremath{\text{MFCC}}\xspace$ -based systems with $\ensuremath{\text{LM off}}\xspace$

- ♦ Impact of LE on LVCSR: clean recordings (no noise added); MFCC-CVN front-end; no LM
- \circledast WER systematically increases with the level of LE

LVCSR Evaluation

- Evaluation of selected cepstral compensation strategies:
 - Cepstral mean normalization (CMN)
 - Cepstral mean-variance normalization (CVN)
 - Cepstral gain normalization (CGN)
 - RASTA filtering in cepstral domain
 - Feature warping (Gaussianization on the utterance level)
 - Histogram equalization (TIMIT training data \rightarrow reference distributions)
 - Quantile-based cepstral dynamics normalization (QCN); QCN4 4% and 96% quantiles bound the dynamic range; QCN9 utilizes 9% and 91% quantiles

Slide 17

- QCN_RASTA – QCN + proposed low-pass filter

Clean Recordings			Noisy Recordings	
Cepstral	Across	_	Cepstral	Across
Comp.	Cond.	_	Comp.	Cond.
none	62.0		none	77.8
RASTA	60.0		QCN9	69.2
warp	55.7		CVN	68.5
CMN	54.3		QCN4_RASTA	68.4
QCN4	54.3		CGN	67.0
HistEq	53.9		HistEq	64.4
CVN	53.3			
CGN	52.8			
QCN4_RASTA	52.6			
QCN9	51.1			

Proposed QCN_RASTA improves performance of QCN; QCN-normalized features outperform other considered setups on clean neutral and LE recordings

Slide 18

The ranking of front-ends changes in noisy conditions (recordings mixed with car noise);
 QCN_RASTA still outperforms 'raw' QCN normalization

Conclusions

- Analyzed impact of LE on speech parameters in UT-Scope database
- A number of speech production parameters found to vary with the type and level of noise inducing LE
- Strong linear relationship between noise presentation level (dB) and mean pitch (Hz) was observed for large crowd and highway noises
- A modified version of RASTA filtering scheme was proposed and shown to reduce transient effects of original RASTA
- Combination of QCN and newly designed low-pass filter (QCN_RASTA) improved QCN performance in both clean signal and noisy signal conditions (on a mixture of neutral and LE speech)
- A number of cepstral normalizations were compared in the task of talking style (neutral/LE) and noisy background mismatch
- CGN, histogram equalization, QCN, and newly proposed QCN_RASTA provided significant performance gains in talking style/noise mismatched conditions

Slide 19

None of the normalizations managed to provide superior performance across all tasks

Thank you!

IEEE ICASSP 2011, Prague, Czech Republic, May 22-27, 2011

Slide 20