5	

Rapid Feature Space MLLR Speaker Adaptation with Bilinear Models

Shilei Zhang, Peder A. Olsen, Yong Qin IBM China Research Lab

Outline

- Introduction
- Standard FMLLR
- FMLLR Using Bilinear Models
- Experimental Results
- Conclusion

Introduction

- Mismatch between the training and testing conditions leads to loss of some performance based on well-trained models.
- In model-based adaptation, three basic categories of speaker adaptation methods
 - Speaker-clustering based methods (including eigenspace-based methods)
 - Bayesian-based method, such as Maximum a Posteriori (MAP)
 - Transformation based method, Maximum-Likelihood Linear Regression (MLLR)
- Some adaptation techniques provide limited improvements if any with small amounts of test data;

For small amount data, the following adaptation give better performance;

- Speaker-clustering or eigenspace-based adaptation method
 - eigenvoice, eigen-MLLR, cluster weighting, or reference speaker weighting
 - Kernel-based adaptation, such as kernel eigenvoice (KEV); kernel eigenspacebased MLLR (KEMLLR); MPLKR
- Imposing various constraint on MLLR: a) block-diagonal or diagonal MLLR;
 b) MAPLR/FMAPLR, c) DLLR
- General speaking, the key point is introducing a prior knowledge analysis on the training speakers, and incorporating it to decoding process.
 - eigen FMLLR
 - fMAPLR
 - Bilinear models

FMLLR

- FMLLR has proved to be highly effective as a method for unsupervised adaptation to a new speaker or environment
- It requires only a single transform matrix and bias vector to be estimated

$$\stackrel{\wedge}{O}(\tau) = AO(\tau) + b = W\xi(\tau)$$

 The EM algorithm gives an auxiliary function that can be maximized with respect to W yield an increase in the likelihood:

$$\theta(\Theta, \hat{\Theta}) = \beta \log(p_i^T w_i) - \frac{1}{2} \sum_{i=1}^N [w_i^T G^{(i)} w_i - 2w_i^T k^{(i)}]$$

Bilinear Models

Data contains two components: style and content Want to represent them separately

Symmetric Bilinear Model:

- y : observed data
- a : style vector
- **b** : content vector
- $\mathbf{I}, j:$ components of style and content
- W : matrix of basis vectors

Asymmetric Bilinear Model:

A : matrix of style-specific basis vectors

More flexible model Easier to deal with

$$\mathbf{y} = \sum_{i=1}^{I} \sum_{j=1}^{J} \mathbf{w}_{ij} a_i b_j$$
$$= \mathbf{a}^{\mathrm{T}} \mathbf{W} \mathbf{b}$$
$$= \mathbf{A} \mathbf{b}$$
$$\mathbf{Y} : (SK) \times \mathbf{C}$$
$$\mathbf{A} : (SK) \times \mathbf{J}$$
$$\mathbf{b} : \mathbf{J} \times \mathbf{C}$$

2011-6-22

Model building: Fit asymmetric model (find A and B for known styles and contents) using SVD

$$(SD) \times C \text{ matrix}$$

$$\overline{\mathbf{M}} = \begin{bmatrix} \overline{\mathbf{m}}^{11} & \cdots & \overline{\mathbf{m}}^{1C} \\ \vdots & \ddots & \vdots \\ \overline{\mathbf{m}}^{S1} & \cdots & \overline{\mathbf{m}}^{SC} \end{bmatrix} = \mathbf{U} \mathbf{S} \mathbf{V}^T = \mathbf{A} \mathbf{B}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}^1 \\ \vdots \\ \mathbf{A}^s \\ \vdots \\ \mathbf{A}^S \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}^1 \cdots \mathbf{b}^C \end{bmatrix}$$

Adaptation process: Find style matrix that best explains data for incomplete style

Bilinear model building for fMLLR

The observation fMLLR matrix: 'style' is defined as speaker; 'content' is defined as the columns.
[b. au ... au]

$$W = \begin{bmatrix} b_1 & a_{11} & \cdots & a_{1N} \\ b_2 & a_{21} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ b_N & a_{N1} & \cdots & a_{NN} \end{bmatrix} \in R^{DxD+1}$$

 The bilinear model for observation matrix was computed based on the stacked fMLLR transforms from the training speakers. The observation matrix is arranged as a (SD)x(D+1) matrix

$$\bar{M}_{A} = \begin{bmatrix} W^{1} - W^{0} \\ \vdots \\ W^{s} - W^{0} \\ \vdots \\ W^{s} - W^{0} \end{bmatrix}, 1 \le s \le S \qquad \qquad W^{0} = \sum_{i=1}^{S} W^{i}$$

- Then matrix M_A can be decomposed and expressed for asymmetric bilinear model as $M_A = AB$ $A \in R^{(SD)xJ}$ $B \in R^{Jx(D+1)}$
 - \overline{M}_A is decomposed as USV^T by SVD.
 - the style parameter A is defined as the first J columns of US and content basic vector B is defined as the first J rows of V^T

Adaptation process

- We can get the adaptation process based on maximum likelihood criterion $\hat{O}(\tau) = W\xi(\tau) = (W_0 + AB)\xi(\tau)$
- Auxiliary function is

$$\begin{cases} \theta(M, \hat{M}) = \beta \log(p_i w_i^T) - 1/2 \sum_{i=1}^n [(w_{0i} + A_i B) G^{(i)} (w_{0i} + A_i B)^T - 2(w_{0i} + A_i B) k^{(i)^T}] \\ G^{(i)} = \sum_{m=1}^M \frac{1}{\sigma_i^{(m)2}} \sum_{\tau=1}^T \gamma_m(\tau) \xi(\tau) \xi(\tau)^T \\ k^{(i)} = \sum_{m=1}^M \frac{1}{\sigma_i^{(m)2}} \mu_i^{(m)} \sum_{\tau=1}^T \gamma_m(\tau) \xi(\tau)^T \end{cases}$$

Then

$$\theta(M, \hat{M}) = \beta \log(p_i w_i^T) - 1/2 \sum_{i=1}^n [(w_{0i} + A_i B) G^{(i)} (w_{0i} + A_i B)^T - 2(w_{0i} + A_i B) k^{(i)^T}]$$

= $\beta \log(p_i w_i^T) - 1/2 \sum_{i=1}^n [w_{0i} G^{(i)} w_{0i}^T + (A_i B) G^{(i)} (A_i B)^T + 2w_{0i} G^{(i)} (A_i B)^T - 2(w_{0i} + A_i B) k^{(i)^T}]$

Ignoring all terms independent of A_i

$$\theta(M, \hat{M}) = \beta \log(p_i w_i^T) - 1/2 \sum_{i=1}^n [A_i \hat{G}^{(i)} A_i^T - 2A_i k^{(i)^T}]$$

- Where $\begin{cases} \uparrow \\ G^{(i)} = (BG^{(i)}B^{T}) \\ \uparrow \\ k^{(i)^{T}} = k^{(i)}B^{T} w_{0i}G^{(i)}B^{T} \end{cases}$
- Differentiating with respect to A_i yields

$$\frac{\partial \theta(M, \hat{M})}{\partial A_i} = \beta \frac{p_i B^T}{p_i w_i^T} - A_i G^{(i)} + k^{(i)}$$

The optimization is on a row by row basis, assuming that the above equation is equating to zero for row *i*, then

$$\beta \frac{p_{i}B^{T}}{p_{i}w_{i}^{T}} = A_{i}G^{(i)} - k^{(i)}$$

$$p_{i}w_{i}^{T}k^{(i)}G^{(i)^{-1}} + \beta p_{i}B^{T}G^{(i)^{-1}} = p_{i}w_{i}^{T}A_{i}$$
(1)

• Then
$$A_i = k^{(i)} G^{(i)^{-1}} + \frac{\beta}{p_i w_i^T} p_i B^T G^{(i)^{-1}}$$

= $\alpha (p_i B^T + \lambda k^{(i)}) G^{(i)^{-1}}$
= $(\alpha p_i B^T + k^{(i)}) G^{(i)^{-1}}$

• To find α , λ , substituting this expression for A_i in equation 1),

$$\beta - \alpha^2 p_i B^T G^{(i)^{-1}} (BP_i^T + \lambda k^{(i)^T}) - \alpha p_i w_{0i}^T = 0$$

$$\alpha^2 p_i B^T G^{(i)^{-1}} (p_i B^T)^T + \alpha (p_i B^T G^{(i)^{-1}} k^{(i)^T} + p_i w_{0i}^T) - \beta = 0$$

• There will be two possible solutions in α . The value will be selected that maximizes auxiliary function.

selection J

- The amount of adaptation data;
- Singular values;
- Develop set to decide J;
- Pre-selected J based on the ML objective function automatically.

Experiment Results

Connected Digits Experiments

- *eT0:* about 580 utterances ranging in length from 2 to 5 digits (18s per speaker)
- *eT1:* about 580 utterances ranging in length from 6-15 digits (38s per speaker)
- Var1/2/3: parked, low speed, high speed

Table 1. Performance comparison in sentence error rate (SER)

SER(%)	eT2.var1	eT2.var2	eT1.var1	eT1.var2	eT0.var1	eT0.var2
SI	12.7	31.1	12.1	28.6	11.3	23.5
+FMLLR	10.3	27.5	11.3	24.8	10.2	20.0
+Bilinear	10.1	27.0	11.8	24.3	9.7	19.9

Mandarin Voice Search Database

- The length of each utterance is about 6 seconds on average

Table 2. Performance comparison in character error rate (CER)

CER	Voice Search database
SI +SA w/FMLLR	15.20%
SI+ SA w/ Bilinear model	13.75%

Conclusions and discussion

- Bilinear models can effectively incorporate prior information and reduce the number of free parameters.
- Future works
 - J selection with variant amount of adaptation data
 - class-dependent bilinear model adaptation by training the different bilinear model based on class information
 - efficiently control the speaker number of training dataset to further improve the robustness and performance
- Any questions, pls contact with ShiLei Zhang (slzhang@cn.ibm.com)