Variational Approximation of Long-Span Language Models for LVCSR

Anoop Deoras[§], Tomáš Mikolov^{§§} Stefan Kombrink^{§§}, Martin Karafiát^{§§} **Sanjeev Khudanpur**[§]

§ HLTCOE and CLSP, Johns Hopkins University, USA §§ Speech@FIT, Brno University of Technology, CZ

May 25th 2011, IEEE- ICASSP 2011

Annotated Speech Data

Language Models

Assign a probability distribution P(W) to any word string W.

P(W) is obtained using chain rule and then approximated using Markov assumption:

$$P(W) = \prod_{i=1}^{M} P(w_i|w_{i-1}, \dots, w_1) \approx \prod_{i=1}^{M} P(w_i|\phi(w_{i-1}, \dots, w_1))$$

Language Models

Assign a probability distribution P(W) to any word string W.

P(W) is obtained using chain rule and then approximated using Markov assumption:

$$P(W) = \prod_{i=1}^{M} P(w_i|w_{i-1}, \dots, w_1) \approx \prod_{i=1}^{M} P(w_i|w_{i-1}, \dots, w_{i-n+1})$$

n-gram LM

n: Order of LM

#{word, history}: Number of n-grams

Size of LM (n, #)

Re-scoring Decoding Framework

- Encodes exponential number of hypotheses (L)
- Deploying long-span models not always possible

- I hello how are you all to day
- 2. hello now are you all to day
- 3. hello how are you all today

N. hello now are you well today

- I. hello how are you all to day
- 2. hello now are you all to day
- 3. hello how are you all today

N. hello now are you well today

- Long-Span Models can be easily deployed
- N << L
- NBests are **biased** towards baseline models

Large Search Space

Local Models

Less Biased

Large Search Space

Local Models

Less Biased

Limited Search Space

Long Span Models

More Biased

Large Search Space

Local Models

Less Biased

Limited Search Space

Long Span Models

More Biased

Iterative Decoding for Re-scoring

(Deoras et.al ASRU 09, Rastrow et al ICASSP 2011)

Less Biased

Large Search Space

Local Models

Less Biased

Limited Search Space

Long Span Models

More Biased

Iterative Decoding for Re-scoring

(Deoras et.al ASRU 09, Rastrow et al ICASSP 2011)

Iterative Decoding for Re-scoring

(Deoras et.al ASRU 09, Rastrow et al ICASSP 2011)

Approximation of Long Span Models

(Deoras et.al. ICASSP 11)

Iterative Decoding for Re-scoring

(Deoras et.al ASRU 09, Rastrow et al ICASSP 2011)

Approximation of Long Span Models
(Deoras et.al. ICASSP 11)

This Talk

Introduction and Motivation

- RNN: Long-Span Models
- Variational Approximation Framework
- Experiments and Discussions
- Conclusion

Long Span Models: RNNs

Unlike Backoff models, RNNs compute whole probability distribution at every time step.

Long Span Models: RNNs

Unlike Backoff models, RNNs compute whole probability distribution at every time step.

Introduction and Motivation

Variational Approximations

- RNN: Long-Span Models

- Variational Approximation Framework
- Experiments and Discussions
- Conclusion

- Given a long-span model P, we want to do speech recognition.

P = Structured LM, Recurrent NN, Random Forest etc ..

- Given a long-span model P, we want to do speech recognition.

P = Structured LM, Recurrent NN, Random Forest etc ..

- Decode with **M** and then do N-best rescoring with **P**
- M and P are far

- Given a long-span model P, we want to do speech recognition.

P = Structured LM, Recurrent NN, Random Forest etc ..

- Decode with **M** and then do N-best rescoring with **P**

- M and P are far

- Find a <u>tractable</u> substitute, Q, and do speech recognition with it.

Q may belong to, say, Finite State Machine family.

- Given a long-span model P, we want to do speech recognition.

P = Structured LM, Recurrent NN, Random Forest etc ..

- Decode with **M** and then do N-best rescoring with **P**

- M and P are far

- Find a <u>tractable</u> substitute, Q, and do speech recognition with it.

Q may belong to, say, Finite State Machine family.

- Decode with Q and then do N-best rescoring with P
- Q and P are close

- Decode with **M** and then do N-best rescoring with **P**

- Decode with Q and then do N-best rescoring with P

- Decode with **M** and then do N-best rescoring with **P**

0001. I am not the Oracle

0002. I am not the Oracle

0003. I am not the Oracle

•••••

0098. I am not the Oracle

0099. I am not the Oracle

0100. I am not the Oracle

1996. I am not the Oracle

1997. I am not the Oracle

1998. I am not the Oracle

1999. I am not the Oracle

2000. I am the Oracle

- Decode with Q and then do N-best rescoring with P

- Decode with **M** and then do N-best rescoring with **P**

0001. I am not the Oracle

0002. I am not the Oracle

0003. I am not the Oracle

0098. I am not the Oracle

0099. I am not the Oracle

0100. I am not the Oracle

•••••

1996. I am not the Oracle

1997. I am not the Oracle

1998. I am not the Oracle

1999. I am not the Oracle

2000. I am the Oracle

- Decode with Q and then do N-best rescoring with P

0001. I am not the Oracle

0002. I am not the Oracle

0003. I am not the Oracle

•••••

0098. I am not the Oracle

0099. I am not the Oracle

0100. I am the Oracle

- Decode with **M** and then do N-best rescoring with **P**

0001.1 am not the Oracle

0002. I am not the Oracle

0003. I am not the Oracle

•••••

0098. I am not the Oracle

0099. I am not the Oracle

0100.1 am not the Oracle

•••••

1996. I am not the Oracle

1997. I am not the Oracle

1998. I am not the Oracle

1999. I am not the Oracle

2000. I am the Oracle

- Decode with Q and then do N-best rescoring with P

0001. I am not the Oracle

0002. I am not the Oracle

0003. I am not the Oracle

•••••

0098. I am not the Oracle

0099. I am not the Oracle

0100. I am the Oracle

Save Effort

$$Q^* = \arg\min_{Q \in \mathcal{Q}} \mathcal{D}(P||Q)$$

$$Q^* = \arg\min_{Q \in \mathcal{Q}} \mathcal{D}(P||Q)$$

- Restrict the family to n-grams and find a solution in this family.

$$Q^* = \arg\min_{Q \in \mathcal{Q}} \mathcal{D}(P||Q)$$

- Restrict the family to n-grams and find a solution in this family.
- Under some mild conditions, the solution is the **marginalized** version of the long span model.

$$Q^* = \arg\min_{Q \in \mathcal{Q}} \mathcal{D}(P||Q)$$

- Restrict the family to n-grams and find a solution in this family.
- Under some mild conditions, the solution is the **marginalized** version of the long span model.
- Marginalization is extremely difficult for long context models.

$$Q^* = \arg\min_{Q \in \mathcal{Q}} \mathcal{D}(P||Q)$$

- Restrict the family to n-grams and find a solution in this family.
- Under some mild conditions, the solution is the **marginalized** version of the long span model.
- Marginalization is extremely difficult for long context models.
- We obtain solution via **sampling** techniques.

$$Q^* = \arg\min_{Q \in \mathcal{Q}} D(P||Q)$$

$$= \arg\min_{Q \in \mathcal{Q}} \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

$$= \arg\max_{Q \in \mathcal{Q}} \sum_{x \in \mathcal{X}} P(x) \log Q(x)$$

ML Solution

Recipe:

I. Get a sophisticated long-span model, P

- I. Get a sophisticated long-span model, P
- 2. Decide on n-gram family.

- I. Get a sophisticated long-span model, P
- 2. Decide on n-gram family.
- 3. "Synthesize" a huge corpus using P

- I. Get a sophisticated long-span model, P
- 2. Decide on n-gram family.
- 3. "Synthesize" a huge corpus using P
- 4. Estimate **Q** using Maximum Likelihood.
 - **Q** belongs to n-gram family of distributions.

$$\lim_{n \to \infty} \lim_{L \to \infty} KL(P||Q^*) = 0$$

Introduction and Motivation

- RNN: Long-Span Models
- Variational Approximation Framework ✓
- Experiments and Discussions
- Conclusion

Experiments and Results

I. Perplexity Experiments

Penn Tree Bank Corpus (sections 00-24)

IM word token for training

0.2M word token for testing

Top **IOK** most frequent words for Vocabulary

Setup	PPL	Setup	PPL
KN (3g)	148	Random Forest (Xu)	132
VarApxRNN (3g)	152	-	-
VarApx+KN (3g)	124	-	-

Setup	PPL	Setup	PPL
KN (3g)	148	Random Forest (Xu)	132
VarApxRNN (3g)	152	-	-
VarApx+KN (3g)	124	-	-
KN (5g)	141	SLM (Chelba)	149
VarApxRNN (5g)	140	SLM (Roark)	137
VarApx+KN (5g)	120	SLM (Filimonov)	125

Setup	PPL	Setup	PPL
KN (3g)	148	Random Forest (Xu)	132
VarApxRNN (3g)	152	-	-
VarApx+KN (3g)	124	-	-
KN (5g)	141	SLM (Chelba)	149
VarApxRNN (5g)	140	SLM (Roark)	137
VarApx+KN (5g)	120	SLM (Filimonov)	125
VarApx+KN + Cache	111	X-Sent (Momtazi)	118
RNN-Full	102	-	-

In Domain: MIT Lectures

Out of Domain: BN

2. ASR: Adaptation Experiments

Setup	Set 1	Set 2
KN:MIT+BN (4g) decoding	24.7	22.4
+ RNN-Full rescoring (100 best)	24.1	22.4
+ RNN-Full rescoring (2000 best)	23.8	21.6
Oracle (2000 best)	17.9	15.5

Baseline

Setup	Set 1	Set 2	
KN:MIT+BN (4g) decoding	24.7	22.4	Pacalina
+ RNN-Full rescoring (100 best)	24.1	22.4	Baseline
+ RNN-Full rescoring (2000 best)	23.8	21.6	
Oracle (2000 best)	17.9	15.5	
VarApx+KN (4g) decoding	24.3	22.2	D
+ RNN-Full rescoring (100 best)	23.8	21.7	Proposed
+ RNN-Full rescoring (2000 best)	23.6	21.5	
Oracle (2000 best)	17.5	15.1	

2. ASR: CTS and Meeting Recognition

2. ASR: CTS and Meeting Recognition

Setup	eval01	rt07s
GT (2g) Decoding	30.3	33.7
+ KN (5g) Lattice Rescoring	28.0	32.4
+ RNN-Full rescoring (100 best)	27.1	30.8
+ RNN-Full rescoring (1000 best)	26.5	30.5
Oracle (1000 best)	19.5	21.3

Baseline

2. ASR: CTS and Meeting Recognition

Setup	eval01	rt07s	•
GT (2g) Decoding	30.3	33.7	•
+ KN (5g) Lattice Rescoring	28.0	32.4	Danalina
+ RNN-Full rescoring (100 best)	27.1	30.8	Baseline
+ RNN-Full rescoring (1000 best)	26.5	30.5	
Oracle (1000 best)	19.5	21.3	•
VarApx+GT (2g) Decoding	30.1	33.3	
+ VarApx+KN (5g) Lattice Rescoring	27.2	31.7	Proposed
+ RNN-Full rescoring (100 best)	27.0	30.6	··oposed
+ RNN-Full rescoring (1000 best)	26.5	30.4	
Oracle (1000 best)	19.5	21.0	

Introduction and Motivation

Variational Approximations

- RNN: Long-Span Models
- Variational Approximation Framework $\sqrt{}$
- Experiments and Discussions ✓
- Conclusion

Conclusion and Future Work

Conclusion and Future Work

I. *n*-gram approximation of long-span LMs yield greater accuracy and allow their easy integration into decoders.

Conclusion and Future Work

I. *n*-gram approximation of long-span LMs yield greater accuracy and allow their easy integration into decoders.

2. RNN LM improves significantly over n-grams with increasing data (forthcoming work), calling for an investigation of more powerful tractable approximations.

Thank you

Questions?

Bigger Training data experiment

Setup	WER(rt04)	PPL(rt04)
KN:BN Decoding (4g)	14.10	172.3
VarApx+KN Decoding (4g)	13.5	159.6
RNN-Full	12.1	111

Original Training data is 400M word tokens (Broadcast News).

Sampled about **IB** word tokens.

Pruned the variational model so as to be comparable and usable in decoders.