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Language Models

Assign a probability distribution P(W) to any word string W.

P (W ) =
M∏

i=1

P (wi|wi−1, . . . , w1) ≈
M∏

i=1

P (wi|φ(wi−1, . . . , w1))

P(W) is obtained using chain rule and then approximated using Markov 
assumption:
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Assign a probability distribution P(W) to any word string W.

P(W) is obtained using chain rule and then approximated using Markov 
assumption:

P (W ) =
M∏

i=1

P (wi|wi−1, . . . , w1) ≈
M∏

i=1

P (wi|wi−1, . . . , wi−n+1)

n-gram LM

n: Order of LM

#{word, history}: Number of n-grams

{word history}

Size of LM (n, #)
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Language Models

Transcribed Utterance

beyond n-gram

Acoustic Models

quin-phones

 - Encodes exponential number of hypotheses (L)
 - Deploying long-span models not always possible

Word Lattice
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Transcribed Utterance

beyond n-gram

Acoustic Models

quin-phones

N Best Lists

 - Long-Span Models can be easily deployed
 - N << L
 - NBests are biased towards baseline models
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Long Span Models: RNNs

Mikolov et.al. talked about it in previous lecture

Context Layer

Predicted Word

Context(t)

Input (t)
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Output (t+1)

Current Word

15

Unlike Backoff models, RNNs compute whole probability distribution 
at every time step.
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Q∗ = arg min
Q∈Q

D(P‖Q)

- Restrict the family to n-grams and find a solution in this family.

- Under some mild conditions, the solution is the marginalized 
version of the long span model.

- Marginalization is extremely difficult for long context models.

- We obtain solution via sampling techniques. 
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Variational Approximation
M

Q∗ = arg min
Q∈Q

D(P‖Q)

= arg min
Q∈Q

∑

x∈X
P (x) log

P (x)
Q(x)

= arg max
Q∈Q

∑

x∈X
P (x) log Q(x)

ML Solution
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Variational Approximation
M

Recipe:

1. Get a sophisticated long-span model, P

2. Decide on n-gram family.

4. Estimate Q using Maximum Likelihood.

Q belongs to n-gram family of distributions.

lim
n→∞

lim
L→∞

KL(P ||Q∗) = 0

3. “Synthesize” a huge corpus using P
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Experiments and Results

Penn Tree Bank Corpus (sections 00-24)

1M word token for training

0.2M word token for testing

1M Training 
Text

- KN (3g / 5g)

- RNN-Full

- RFLM

- SLM (Chelba)

- SLM (Roark)

- SLM (Filimonov)

- X-Sent (Klakow) 
230M Simulated 

Text
VarApxRNN (3g /5g)

Top 10K most frequent words for Vocabulary

1. Perplexity Experiments
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Experiments and Results

In Domain: MIT Lectures

150K Training 
Text (In 
Domain)

- KN:MIT (4g)

- RNN-Full
3M Simulated 

Text
VarApxRNN (4g)

335M Training 
Text (out of 

Domain)
- KN:BN (4g)

Out of Domain: BN
2. ASR: Adaptation Experiments
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Experiments and Results
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Experiments and Results

5M Training 
Text

- KN (2g/5g)

- RNN-Full
400M Simulated 

Text
VarApxRNN (2g/5g)

2. ASR: CTS and Meeting Recognition
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Conclusion and Future Work

1. n-gram approximation of long-span LMs yield greater accuracy and allow 
their easy integration into decoders.
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Conclusion and Future Work

1. n-gram approximation of long-span LMs yield greater accuracy and allow 
their easy integration into decoders.

2. RNN LM improves significantly over n-grams with increasing data 
(forthcoming work), calling for an investigation of more powerful tractable 
approximations. 
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Thank you

Questions ?
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Setup WER(rt04) PPL(rt04)

KN:BN Decoding (4g) 14.10 172.3

VarApx+KN Decoding (4g) 13.5 159.6

RNN-Full 12.1 111

Original Training data is 400M word tokens (Broadcast News).

Sampled about 1B word tokens.

Pruned the variational model so as to be comparable and usable in decoders.

Bigger Training data experiment 
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