Structured OUtput Layer
(SOUL)
Neural Network Language Model

Le Hai Son, Ilya Oparin,
Alexandre Allauzen, Jean-Luc Gauvain, François Yvon

25/05/2011
Outline

1. Neural Network Language Models
2. Hierarchical Models
3. SOUL Neural Network Language Model
Plan

1. Neural Network Language Models

2. Hierarchical Models

3. SOUL Neural Network Language Model
N-gram models

- Very successful but sparsity issues and lack of generalization
- Flat vocabulary
 - Each word is only a possible outcome of a discrete random variable, an index in the vocabulary
Estimate n-gram probabilities in a continuous space

NNLMs were introduced in [Bengio et al., 2001] and applied to speech recognition in [Schwenk and Gauvain, 2002].

Why should it work?

- "similar" words are expected to have similar feature vectors
- Probability function is a smooth function of feature values
 - A small change in features will induce a small change in the probability
Represent words as as 1-of-\(|V|\) vectors
- Project the word in the continuous space: add a second layer fully connected
- For a 4-gram, the history is a sequence of 3 words
- Merge these three vectors to derive a single vector for the history

\[w \rightarrow \text{|V|: vocabulary size} \]

- A neuron layer represents a vector of values,
- one neuron per value
Represent words as as 1-of-|V| vectors

Project the word in the continuous space: add a second layer fully connected

For a 4-gram, the history is a sequence of 3 words

Merge these three vectors to derive a single vector for the history

The connection between two layers is a matrix operation

The matrix \(R \) contains all the connection weights

\(v \) is a continuous vector
Project a word sequence in a continuous space

- Represent words as as 1-of-$|V|$ vectors
- Project the word in the continuous space: add a second layer fully connected
- For a 4-gram, the history is a sequence of 3 words
- Merge these three vectors to derive a single vector for the history
Represent words as as 1-of-$|V|$ vectors
Project the word in the continuous space: add a second layer fully connected
For a 4-gram, the history is a sequence of 3 words
Merge these three vectors to derive a single vector for the history
Estimate the n-gram probability

- Given the history expressed as a feature vector
- Create a feature vector for the word to be predicted in the prediction space
- Estimate probabilities for all words given the history
- All the parameters must be learned (R, W_{ih}, W_{ho}).
Estimate the n-gram probability

- Given the history expressed as a feature vector
- Create a feature vector for the word to be predicted in the **prediction space**
- Estimate probabilities for all words given the history
- All the parameters must be learned (R, W_{ih}, W_{ho}).
Estimate the n-gram probability

- Given the history expressed as a feature vector
- Create a feature vector for the word to be predicted in the prediction space
- Estimate probabilities for all words given the history

All the parameters must be learned (R, W_{ih}, W_{ho}).
Estimate the n-gram probability

- Given the history expressed as a feature vector
- Create a feature vector for the word to be predicted in the prediction space
- Estimate probabilities for all words given the history
- All the parameters must be learned (R, W_{ih}, W_{ho}).
Early assessment

Key points

- The projection in continuous spaces
- Reduces the sparsity issues
- Learn simultaneously the projection and the prediction

In practice

- Significant and systematic improvements
- In machine translation and speech recognition tasks

Probability estimation based on the similarity among the feature vectors

Probability estimation based on the similarity among the feature vectors
Early assessment

Key points

- The projection **in continuous spaces** → reduces the sparsity issues
- Learn simultaneously the projection and the prediction

In practice

- Significant and systematic improvements
- In machine translation and speech recognition tasks

Probability estimation based on the similarity among the feature vectors
Early assessment

Key points

- The projection in continuous spaces
 → reduces the sparsity issues
- Learn simultaneously the projection and the prediction

In practice

- Significant and systematic improvements
- In machine translation and speech recognition tasks

😊 Everybody should use it!
Early assessment

Key points

- The projection in continuous spaces → reduces the sparsity issues
- Learn simultaneously the projection and the prediction

In practice

- Significant and systematic improvements
- In machine translation and speech recognition tasks

😊 Learning and inference time
Neural Network Language Models

Early assessment

Key points
- The projection in continuous spaces
- reduces the sparsity issues
- Learn simultaneously the projection and the prediction

In practice
- Significant and systematic improvements
- In machine translation and speech recognition tasks
- Learning and inference time

With a large training set
Why it is so long? - Inference

Forward propagation of the history

- The projection: select a row in \mathbf{R}
- Compute a vector for the predicted word
- Estimate the probability for all the words $\in V$

Complexity issues

- The input vocabulary can be as large as we want
- Increasing the order does not drastically increase the complexity
- The problem is the output vocabulary size
Why it is so long? - Inference

Forward propagation of the history
- The projection: select a row in \mathbf{R}
- Compute a vector for the predicted word
- Estimate the probability for all the words $\in \mathcal{V}$

Complexity issues
- The input vocabulary can be as large as we want
- Increasing the order does not drastically increase the complexity
- The problem is the output vocabulary size
Why it is so long? - Inference

Forward propagation of the history
- The projection: select a row in \mathbf{R}
- Compute a vector for the predicted word
- Estimate the probability for all the words $\in V$

Complexity issues
- The input vocabulary can be as large as we want
- Increasing the order does not drastically increase the complexity
- The problem is the output vocabulary size

Matrix multiplication
$200 \times |V|$
Why it is so long? - Inference

Forward propagation of the history
- The projection: select a row in \mathbf{R}
- Compute a vector for the predicted word
- Estimate the probability for all the words $\in \mathcal{V}$

Complexity issues
- The input vocabulary can be as large as we want
- Increasing the order does not drastically increase the complexity
- The problem is the output vocabulary size

Matrix multiplication
$200 \times |\mathcal{V}|$
Why it is so long? - Inference

Forward propagation of the history
- The projection: select a row in \mathbf{R}
- Compute a vector for the predicted word
- Estimate the probability for all the words $\in V$

Complexity issues
- The input vocabulary can be as large as we want
- Increasing the order does not drastically increase the complexity
- The problem is the output vocabulary size

Matrix multiplication $200 \times |V|$
Usual tricks to speed-up training (and inference)

Re-sampling and batch training
- For each epoch: down-sampling of the training data
- Forward and Back-propagation for a group of n-grams

Reduce the output vocabulary
- Use the Neural network to predict only the K most frequent words
- For a tractable model: $K = 6\,000$ to $20\,000$
- Requires the normalization of the distribution for the whole vocabulary
 \Rightarrow use the standard n-gram LM
Plan

1. Neural Network Language Models
2. Hierarchical Models
3. SOUL Neural Network Language Model
Speeding up MaxEnt models

Main ideas as proposed in [Goodman, 2001]

- Instead of computing directly $P(w|h)$, make use of clustering of words into classes:

$$P(w|h) = P(w|c(w), h)P(c(w)|h)$$

- Any classes can be used, but generalization may be better for classes for which it’s easier to learn $P(c(w)|h)$

Example of reduction

- 10000 word vocabulary with 100 classes
- 2 normalizations over 100 outcomes
- $10000 \rightarrow 200$ (reduction by 50)
Hierarchical Probabilistic NNLM

Main ideas as proposed in [Morin and Bengio, 2005]
- Perform binary hierarchical clustering of the vocabulary
- Predict words as paths in this clustering tree

Details
- Clustering is constrained by WordNet semantic hierarchy
- Predicting next bit in hierarchy as $P(b|\text{node}, w_{t-1}, \ldots, w_{t-n+1})$

Results
- Brown corpus, 1M words, 10000 words vocabulary
- Speed-up but loss in perplexity as compared to a standard NNLM
Scalable Hierarchical Distributed LM

Main ideas as proposed in [Mnih and Hinton, 2008]
- Use automatic clustering instead of WordNet
- Implement as log-bilinear model
- One-to-many word class mapping

Results
- APNews dataset, 14M words, 18k vocabulary
- Perplexity improvements over \(n\)-gram model, similar performance to a non-hierarchical LBL
- No comparison with non-linear NNLMs used in STT
Plan

1. Neural Network Language Models
2. Hierarchical Models
3. SOUL Neural Network Language Model
Structured OUtput Layer NNLM

Main ideas

- Trees are not binary
 - Multiple output layers with a softmax in each
- No clustering for frequent words
 - Compromise between speed and complexity
- Efficient clustering scheme
 - Word vectors in projection space are used for clustering

Task

- Improving state-of-the-art STT system that makes use of shortlist NNLMs
- Large vocabulary and the baseline n-gram LM trained on billions of words
Word clustering

- Associate each frequent word with a single class $c_1(w)$
- Split other words in sub-classes ($c_2(w)$) and so on
Word clustering

- Associate each frequent word with a single class $c_1(w)$
- Split other words in sub-classes ($c_2(w)$) and so on
Word clustering

- Associate each frequent word with a single class $c_1(w)$
- Split other words in sub-classes ($c_2(w)$) and so on
Word clustering

- Associate each frequent word with a single class $c_1(w)$
- Split other words in sub-classes ($c_2(w)$) and so on
Word clustering

- Associate each frequent word with a single class $c_1(w)$
- Split other words in sub-classes ($c_2(w)$) and so on
Word probability

\[P(w_i|h) = P(c_1(w_i)|h) \prod_{d=2}^{D} P(c_d(w_i)|h, c_{1:d-1}) \]

- \(c_{1:D}(w_i) = c_1, \ldots, c_D \): path for the word \(w_i \) in the clustering tree,
- \(D \): depth of the tree,
- \(c_d(w_i) \): (sub-)class,
- \(c_D(w_i) \): leaf
The SOUL language model
The SOUL language model
Training algorithm

Step 1:
Train a standard NNLM model with the shortlist as an output (3 epochs and a shortlist of 8k words)

Step 2:
Reduce the dimension of the context space using with PCA (final dimension is 10 in our experiments)

Step 3:
Perform a recursive K-means word clustering based on the distributed representation induced by the continuous space (except for words in the shortlist)

Step 4:
Train the whole model
Training algorithm

Step 1:
Train a standard NNLM model with the shortlist as an output (3 epochs and a shortlist of 8k words)

Step 2:
Reduce the dimension of the context space using with PCA (final dimension is 10 in our experiments)

Step 3:
Perform a recursive K-means word clustering based on the distributed representation induced by the continuous space (except for words in the shortlist)

Step 4:
Train the whole model
Training algorithm

Step 1:
Train a standard NNLM model with the shortlist as an output (3 epochs and a shortlist of 8k words)

Step 2:
Reduce the dimension of the context space using with PCA (final dimension is 10 in our experiments)

Step 3:
Perform a recursive K-means word clustering based on the distributed representation induced by the continuous space (except for words in the shortlist)

Step 4:
Train the whole model
Training algorithm

Step 1:
Train a standard NNLM model with the shortlist as an output (3 epochs and a shortlist of 8k words)

Step 2:
Reduce the dimension of the context space using with PCA (final dimension is 10 in our experiments)

Step 3:
Perform a recursive K-means word clustering based on the distributed representation induced by the continuous space (except for words in the shortlist)

Step 4:
Train the whole model
Mandarin GALE task

- LIMSI Mandarin STT system
 - 56k vocabulary
 - Baseline LM trained on 3.2 billion words
- 4 NNLMs trained on 25M words after resampling

<table>
<thead>
<tr>
<th>model</th>
<th>ppx <i>dev09</i></th>
<th>CER <i>dev09s</i></th>
<th>CER <i>eval09</i></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 4-gram</td>
<td>211</td>
<td>9.8%</td>
<td>8.9%</td>
</tr>
<tr>
<td>+4-gram NNLM 8k</td>
<td>187</td>
<td>9.5%</td>
<td>8.6%</td>
</tr>
<tr>
<td>+4-gram NNLM 12k</td>
<td>185</td>
<td>9.4%</td>
<td>8.6%</td>
</tr>
<tr>
<td>+4-gram SOUL NNLM</td>
<td>180</td>
<td>9.3%</td>
<td>8.5%</td>
</tr>
<tr>
<td>+6-gram NNLM 8k</td>
<td>177</td>
<td>9.4%</td>
<td>8.5%</td>
</tr>
<tr>
<td>+6-gram NNLM 12k</td>
<td>172</td>
<td>9.3%</td>
<td>8.5%</td>
</tr>
<tr>
<td>+6-gram SOUL NNLM</td>
<td>162</td>
<td>9.1%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>
Conclusion

- Neural network and class-based language models combined together
- SOUL LM is able to deal with vocabularies of arbitrary sizes
- Speech recognition improvements are achieved on a large-scale task and over challenging baselines
- SOUL LM improves better for longer contexts

