
Distributed training of large scale exponential language
models

Abhinav Sethy Stanley Chen Bhuvana Ramabhadran

IBM

May 25, 2011

Outline

1 Introduction

2 Model M

3 Normalization sum computation

4 Expectation computation

5 Distributed training

6 Results and conclusion

Introduction

Exponential n-gram models

Exponential n-gram models comprise a powerful statistical framework
that can model complex dependencies and utilize rich feature
spaces [Wu and Khudanpur, 2002, Rosenfeld, 1996]

For a set of target symbols y ∈ Y and input symbols x ∈ X , an
exponential model with parameters Λ = {λi} and corresponding
features f1(x , y)...fF (x , y) has the form

PΛ(y |x) =
exp(

∑F
i=1 λi fi (x , y))

Z (x)
(1)

Z (x) =
∑
y∈Y

exp(
F∑
i=1

λi fi (x , y)) (2)

We refer to x as the event history and y as the target.

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 3 / 32

Introduction

Exponential n-gram models

In an exponential n-gram model (for n = 3), we have binary features
f(x,y)(·) for (x, y) of the forms

(ε,wj), (wj−1,wj), (wj−2wj − 1,wj)

where f(x,y)(x , y) = 1 iff the event history x ends in x and the target
word y is y.

Parameter estimation involves `1 and `2
2 regularization. The training

objective function can be written as

Ø`1+`2
2
(L) = logPPtrain +

α

D

∑
i

|λi |+
1

2σ2D

∑
i

λ2
i (3)

for some α and σ, where PPtrain is training set perplexity and D is
the size of the training set in words.

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 4 / 32

Introduction

Training exponential n-gram models

Exponential n-gram models are trained using iterative update
algorithms which compare the expected feature counts to observed
feature counts and update parameters accordingly

For a feature f(x,y)(·), the expected feature count can be computed as

E (f(x,y)) =
∑

(xd ,yd)∈D:f(x,y)(xd ,y)=1

exp(
∑F

i=1 λi fi (xd , y))

Z (xd)
(4)

where the training data D is expressed as a sequence of event
histories and targets (xd , yd). Given feature expectations, it is
generally inexpensive to update the λi ’s using regularized versions of
iterative scaling [Darroch and Ratcliff, 1972] or other iterative update
algorithms [Malouf, 2002].

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 5 / 32

Model M

Model M

In [Chen, 2009], a novel class-based exponential n-gram language
model, Model M was proposed. Gains over a wide range of domains,
including Wall Street Journal, Hub4 English Broadcast News and
GALE Arabic (around 5% Relative improvements in WER and PPL)

Model M can be expressed as a combination of two exponential
n-gram models

p(w1 · · ·wl) =
l+1∏
j=1

p(cj |c1 · · · cj−1,w1 · · ·wj−1)×

l∏
j=1

p(wj |c1 · · · cj ,w1 · · ·wj−1) (5)

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 6 / 32

Model M

Model M

We can define (the trigram version of) Model M as

ClassModel : p(cj |c1 · · · cj−1,w1 · · ·wj−1) ≡ png(cj |cj−2cj−1,wj−2wj−1)

WordModel : p(wj |c1 · · · cj ,w1 · · ·wj−1) ≡ png(wj |wj−2wj−1cj)
(6)

The class model includes features induced from both word and class
histories.

The two exponential n-gram models can be trained independently of
each other.

Although Model M provides significant clear gains on a range of
tasks, it comes with a steep computational cost at training time. Our
reference implementation required around 30 hours of computation
and 10GB of memory for 100M words of training data on a typical
Xeon CPU.

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 7 / 32

Normalization sum computation

Normalization sum computation: Overview

For any two event histories x1 and x2, we can write the difference
between their associated normalization terms as

Z (x1)− Z (x2) =
∑
y∈Y

(α(x1, y)− α(x2, y)) (7)

where we define α(x , y) = exp(
∑F

i=1 λi fi (x , y)), or the numerator on
the right-hand side in eq. (1).

For “sparse” models, most terms in eq. (7) will be 0 for most x1 and
x2. For example, for an infrequent word y , only the unigram feature
f(ε,y)(·) will be active for most x1 and x2, in which case
α(x1, y) = α(x2, y).

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 8 / 32

Normalization sum computation

Normalization sum computation

For the sequence of training set histories x1, x2, . . . , xD , we can
compute normalization terms efficiently by just computing the
difference between Z (xd) and Z (xd+1).

Key Idea Sort the corpus such that consecutive histories differ only in
small number of words thus reducing the number of target words to
sum over.

A.Sethy et al (IBM) Distributed training of large scale exponential language models May 25, 2011 9 / 32

Normalization sum computation

Normalization sum computation: history sorting

Define a feature history x for each x occuring in a feature of the form
f(x,y)(·). For an exponential trigram model, for instance, there will be
a feature history for each bigram, unigram, and empty history (i.e., ε)
occurring in the training data.

The set of n-gram feature histories can be viewed as forming a tree
with the empty history at the root. We assign each feature history a
unique ID by doing a prefix traversal of the tree, so that lower-order
histories are assigned lower ID’s.

In models with multiple sets of n-gram features, we can form a single
tree by connecting each separate feature tree to a common root node

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 10 / 32

Normalization sum computation

Normalization sum computation: history sorting

For each training event history xd , associate a list of active feature
history ID’s, sorted in ascending order.

Sort event histories by sorting the associated (sorted) feature history
ID lists lexicographically.

In this way, consecutive event histories will tend to have very similar
sets of active feature histories, so that Z (xd+1)− Z (xd) can be
computed efficiently. That is, consecutive event histories will tend to
differ only in feature histories with high ID’s, which tend to
correspond to higher-order n-gram histories, which tend to co-occur in
fewer features f(x,y)(·).

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 11 / 32

Normalization sum computation

Normalization sum computation

Once event histories are sorted, we can compute all normalization
terms Z (xd) in each training iteration by processing each event
history in turn.

For each event history xd , we keep track of the values α(xd , y) for all
y ∈ Y as well as Z (xd) =

∑
y∈Y α(xd , y).

Moving from one event history to the next, we identify all feature
histories x that differ, and compute α(xd+1, y)− α(xd , y) for only
those y such that the feature f(x,y)(·) exists for one of these x.

For all other y , we have α(xd+1, y) = α(xd , y), and Z (xd+1) can be
computed efficiently using eq. (7).

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 12 / 32

Expectation computation

Expectation computation

Given a feature f(x,y)(·), from eq. (4) we see that its expectation is
the sum of α(xd , y)/Z (xd) over those training event histories xd
where the feature history x is active.

Consider a sequence of event histories xd1 , . . . , xd2 such that x is
active in each history and α(xd , y) is constant. Then, we have

d2∑
d=d1

α(xd , y)

Z (xd)
= α(xd1 , y)×

d2∑
d=d1

Z−1(xd) (8)

By taking advantage of this property, instead of updating feature
expectations for every y at every event history xd , we need only
update feature expectations for those y where the set of features
active for the event (xd , y) changes

The sum
∑d2

d=d1
Z−1(xd) is independent of y and thus can be shared

across target words.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 13 / 32

Expectation computation

Expectation computation

The sorting of event histories performed for the normalization term
computation attempts to change as few α(xd , y) as possible between
consecutive event histories; thus, this sorting makes the expectation
computation more efficient as well.

Specifically, we compute feature expectations by processing each
event history xd in turn, keeping track of active features for each
(xd , y) (usually just the unigram feature for most words).

For each xd , we first compute Z (xd) using the algorithm described
earlier. Let Z−1

d =
∑d

d ′=1 Z
−1(xd ′), the sum of inverse normalizers so

far, and let Z−1
d (y) = Z−1

d ′ for the most recent event history xd ′ such
that (xd ′ , y) and (xd , y) have different sets of features active.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 14 / 32

Expectation computation

Expectation computation

Then, for each y such that (xd , y) and (xd+1, y) have different sets of
features active and for each feature f(x,y)(·) active for event (xd , y),
we update the running total for E (f(x,y)) by adding the quantity

α(y)[Z−1
d − Z−1

d (y)].

This has the effect of identifying maximal event history sequences
with shared expectation computation

Once we have the feature expectations E (f(x,y)) for a training
iteration, we can use unnormalized iterative scaling [Chen et al., 2010]
or some other update algorithm to update the parameters

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 15 / 32

Expectation computation

Relationship to prior art

Cluster expansion introduced in [Lafferty and Suhm, 1995] provides
the basis for efficient expectation and normalization sum computation.

In [Wu and Khudanpur, 2002, Wu and Khudanpur, 2000], the
authors describe an efficient scheme for training exponential n-gram
models where they propogate the normalization sums from lower
order to higher order n-grams and expectations from higher order to
lower order n-grams.

The approach proposed in this paper is based on sorting the n-gram
events in the corpus in a particular order and computing only the
differentials between consecutive sorted events. No need to keep full
tree of n-gram features in memory.
Simpler formulation for models containing multiple sets of n-gram
features (like the class prediction model in Model M)

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 16 / 32

Distributed training

Parallelized training: Target vocabulary splits

The normalization sum can be computed by summing the
normalization terms computed over each vocabulary partition.

The expectation computation can be split perfectly by splitting the
target words across machines

Store a subset of the model features and parameters on each
machine, the memory required on each machine is reduced by a factor
equal to the number of machines.

Parameter reestimation can also be split across machines since the
feature expectation computations are disjoint.

Need a master process to merge the partial normalization terms from
each machine and to broadcast the complete normalization terms
back.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 17 / 32

Distributed training

Parallelized training: Split by corpus

Distribute each partition of the training corpus to a different machine.

Normalization sum computation can be done on a single machine
with no merge required.

Each worker machine needs to load parameters for the features
corresponding to the set of event histories it will process

The memory required for storing the model is not partitioned
efficiently.

Need to merge feature expectations across multiple machines

Parameter reestimation also cannot be split across machines.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 18 / 32

Results and conclusion

Results

Compute time
Direct implementation 4358

Unigram caching 84
Proposed Approach 6

Table 1: Compute time (in seconds) for estimating feature expectations with a
direct implementation of Equation 4, unigram feature caching, and the proposed
method.The corpus used for the results in Table 1 is the Hub4 AM training
corpus with 1.5M words and a vocabulary of 87K.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 19 / 32

Results and conclusion

Parallelization Results

English Hub4 system : 335M words, 80K vocabulary

English Hub 4 Model M: Class prediction model had 238M features
with 86M distinct event histories and the word prediction model has
276M features with 97M distinct event histories

Arabic Gale system : 1.6 billion words

Arabic Gale Model M : Class prediction model has 750M features
with 390M distinct event histories and the word prediction model has
940M features with 410M distinct event histories

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 20 / 32

Results and conclusion

Results

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 21 / 32

Results and conclusion

Results

Number of compute nodes
1 2 5 10 20

English BN (Class Model) 12.1 7.2 2.5 1.4 0.95
English BN (Word Model) 13.2 7.8 2.8 1.6 1.2
Arabic Gale (Class Model) 65 36.3 14.1 8.1 5.2
Arabic Gale (Word Model) 80 43 17.3 11 6.3

Table 2: Memory requirement (GB) per compute node

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 22 / 32

Results and conclusion

Results and conclusion

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 23 / 32

Results and conclusion

Results

Number of compute nodes
1 2 5 10 20

English BN (Class Model) 40 24 15 10 7
English BN (Word Model) 18 11 8 4 3
Arabic Gale (Class Model) 260 205 123 69 42
Arabic Gale (Word Model) 135 73 50 36 18

Table 3: Compute time in hours for training word and class prediction
components of Model M

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 24 / 32

Results and conclusion

Related work on parallelization

Parallel training for maxent models is a well researched area. One of
the first papers to discuss parallelized computation of exponential
n-gram models was [Rosenfeld, 1996]

Large scale distributed n-gram models are an active area of
research [Brants et al., 2007, Emami et al., 2007]

In [Mann et al., 2009] the authors investigated methods to minimize
communication load while training large scale maximum entropy
models in a distributed environment. The algorithms presented will
likely hold for exponential n-gram training as well.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 25 / 32

Results and conclusion

Some notes on computational cost

We used unnormalized iterative scaling [Chen, 2009] for parameter
reestimation. Other choices for parameter reestimation such as
Conjugate gradient, LBFGS, RPROP were not studied.

The timing results are with a strict convergence criteria of 0.0001
difference in objective function delta between iterations

The computation cost is both a function of number of unique features
and unique histories. In a typical case with unpruned models we can
typically process around 1.2 million unique n-grams per second with 5
compute nodes.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 26 / 32

Results and conclusion

Conclusion

Efficient training algorithm for exponential n-gram models with binary
features (such as Model M)

Parallelization by vocabulary subsets and data subsets

Vocabulary subsets partition the model perfectly leading to better
memory usage
Data subsets allow for higher number of splits

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 27 / 32

IEEE 2011 WORKSHOP ON AUTOMATIC

SPEECH RECOGNITION AND UNDERSTANDING

Hilton Waikoloa Village, Big Island, Hawaii

11-15 December 2011

www.asru2011.org
Paper submission deadline 1 July 2011

Paper acceptance/rejection 20 August 2011

Early registration deadline 15 October 2011

Workshop 11-15 December 2011

Results and conclusion

References I

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. (2007).

Large language models in machine translation.

In Empirical Methods in Natural Language Processing.

Chen, S. F. (2009).

Shrinking exponential language models.

In Proceedings of NAACL-HLT.

Chen, S. F., Mangu, L., Ramabhadran, B., Sarikaya, R., and Sethy, A.
(2010).

Scaling shrinkage-based language models.

Technical Report RC 24970, IBM Research Division.

Darroch, J. and Ratcliff, D. (1972).

Generalized iterative scaling for log-linear models.

The Annals of Mathematical Statistics, 43:1470–1480.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 29 / 32

Results and conclusion

References II

Emami, A., Papineni, K., and Sorensen, J. (2007).

Large-scale distributed language modeling.

In Proceedings of ICASSP.

Lafferty, J. and Suhm, B. (1995).

Cluster expansions and iterative scaling for maximum entropy language
models.

In Hanson, K. and Silver, R., editors, Maximum Entropy and Bayesian
Methods, pages 195–202. Kluwer Academic Publishers.

Malouf, R. (2002).

A comparison of algorithms for maximum entropy parameter estimation.

In proceedings of the 6th conference on Natural language learning - Volume
20, COLING-02.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 30 / 32

Results and conclusion

References III

Mann, G., McDonald, R., Mohri, M., Silberman, N., and Walker, D. D.
(2009).

Efficient large-scale distributed training of conditional maximum entropy
models.

In Proceedings of NIPS.

Rosenfeld, R. (1996).

A maximum entropy approach to adaptive statistical language modeling.

Computer Speech and Language, 10:187–228.

Wu, J. and Khudanpur, S. (2000).

Efficient training methods for maximum entropy language modeling.

In Proceedings of ICSLP2000.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 31 / 32

Results and conclusion

References IV

Wu, J. and Khudanpur, S. (2002).

Building a topic-dependent maximum entropy language model for very large
corpora.

In Proceedings of ICASSP2002.

A.Sethy et al (IBM) Distributed training of large scale exponential language modelsMay 25, 2011 32 / 32

	Introduction
	Model M
	Normalization sum computation
	Expectation computation
	Distributed training
	Results and conclusion

