Convergence Results in Distributed Kalman Filtering

Shuguang (Robert) Cui

Texas A&M University

• Joint Work With: S. Kar (CMU), H. V. Poor (Princeton) and J. M. F. Moura (CMU)

• Applications: Smart Grid, Social Network, etc...

Existing Work

- Consensus or Distributed Optimization Based Approaches ([Olfati-Saber,2007], [Anandkumar et al, 2008] [Giannakis et al, 2008], [Ribiero et al, 2008], [Khan et al, 2008], [Scaglione et al, 2008], [Nedich et al, 2008], [Moura et al, 2008])
 - Based on linear estimate fusion among neighboring sensors
 - Error stability is not guaranteed (with only global but not local detectability) in general due to time-varying correlations among neighboring estimates
 - Asymptotic stability may only be obtained under specific margins of instability of system dynamics ([Khan-Kar-Jadbabaie-Moura, 2009])

Existing Work (Contd.)

- An estimate swapping approach ([Kar-Moura, 2010])
 - Neighborhood estimates are swapped over time guaranteeing asymptotic stability only under global detectability
 - Uses the machinery of Random Dynamical Systems to establish distributional convergence of related switched Riccati iterates
 - Does not exploit the (possibly) variable rate communication or any form of observation fusion to improve performance
 - Does not quantify how to approach the centralized estimation performance

Distributed Filtering Architecture

- The agents (sensors) need to collaborate for *successful* estimation of $\{\mathbf{x}_k\}$.
- Basic Sensing and Communication Architecture:
 - Inter-agent communication rate is measured as the link activation rate
 - Inter-agent communication is random
- Communication is constrained by the network topology; and only $\overline{\gamma} > 0$ rounds of inter-agent message passing may be allowed per epoch $(k\Delta, (k+1)\Delta]$ on an average.

Basic M-GIKF Tasks

The overall communication rate $\overline{\gamma}$ is split into:

• Estimate Swapping:

- Agents perform pairwise swapping of previous epoch's estimates (if the corresponding link is active)
- Estimate Swapping guarantees asymptotic stability of local estimation errors under weak global detectability assumptions

• Observation Aggregation:

- Agents use the remaining communication to disseminate their instantaneous observations to the neighbors
- Observation Aggregation improves estimation performance

Basic M-GIKF Tasks (Contd.)

Define:

- $M^e(k)$: Number of sensor communications at the k-th epoch for estimate swapping
- $\bullet \ M^o(k)$: Number of sensor communications at the k-th epoch for observation aggregation

Communication Constraint: Since $\overline{\gamma} > 0$ is given, we require:

$$\limsup_{k\to\infty} \frac{1}{k} \sum_{j=0}^{k-1} (M^e(k) + M^o(k)) \le \overline{\gamma} \text{ a.s.}$$

Estimate Swapping: GS Protocol

Estimate Swapping at the *k*-th epoch is performed as follows:

- Generate an adjacency matrix $A^e(k) \in \mathcal{M}$ from distribution \mathcal{D} independently of the past; within each $A^e(k)$ one active link at most
- If (n, l) is a link in $A_{nl}^e(k)$, i.e., $A_{nl}^e(k) = 1$, the agents n and l exchange (swap) their previous estimates

Remark 1.

- At most one network link is active at a time.
- The case $A^e(k) = I_N$ corresponds to no swapping at all

Estimate Swapping: GS Protocol (Contd.)

Connectivity - Assumption (C.1): The maximal graph (V, \mathcal{E}) is connected, where V denotes the set of N agents and \mathcal{E} the set of allowable links.

Proposition 1. Under (C.1) the following hold:

- The sequence $\{A^e(k)\}$ of estimate swapping adjacency matrices is independent and identically distributed as \mathcal{D}
- The mean adjacency matrix \overline{A}^e is irreducible and aperiodic
- The average number of inter-sensor communications due to estimate swapping satisfies almost surely (a.s.)

$$\overline{M}^e = \lim_{k \to \infty} (1/k) \sum_{i=0}^{k-1} M^e(k) < \overline{\gamma}/2$$

Observation Aggregation

Observation Aggregation is performed as follows after Estimate Swapping:

- Each sensor n, starting with its current observation y_k^n , keeps on exchanging its observation with its neighbor(s) till the end of the epoch.
- Inter-agent communications occur at successive ticks of a Poisson process of rate $\overline{\gamma}/2\Delta$ and at each tick only one of the network links is activated with uniform probability.
- The number of communications $M^o(k)$ (for observation aggregation) during $(k\Delta, (k+1)\Delta]$ then follows a Poisson distribution with mean $\overline{\gamma}/2$ and the corresponding sequence of adjacency matrices $\{A_k^o(i)\},$ $i = 1, \cdots, M^o(k)$, is i.i.d. distributed uniformly on the set $\mathcal{M} \setminus \{I_N\}$ of non-trivial permutation matrices.

Observation Aggregation: GS Protocol (*Contd.***)**

Proposition 2. Under (C.1) the following hold:

- The average number of inter-agent communications due to observation aggregation per epoch is $\overline{\gamma}/2$.
- The sequence $\{\mathcal{I}_k^n\}$ denotes the set of observations (w.r.t. node indices) available at sensor n at the end of the epochs
- For every epoch k and every sensor n,

$$\mathbb{P}(\mathcal{I}_k^n = [1, \cdots, N]) > 0$$

M-GIKF: Reasonable Communication Scheme

Definition 1. A communication scheme (for estimate swapping and observation aggregation) is said to be reasonable if

- (E.1) The estimate swapping adjacency matrices $\{A^e(k)\}$ are i.i.d. The mean matrix \overline{A} is doubly stochastic, irreducible, and aperiodic.
- (E.2) The sequences $\{\mathcal{I}_k^n\}$ are *i.i.d.* for each *n*, independent of the estimate swapping and satisfy $\mathbb{P}(\mathcal{I}_k^n = [1, \cdots, N]) > 0$.
- (E.3) The average number of inter-sensor communications (including both the estimate swapping and observation aggregation steps) per epoch is less than or equal to $\overline{\gamma}$, where $\overline{\gamma} > 0$ is a predefined upper bound on the communication rate.
 - **Remark 2.** The previous GS protocol is a reasonable scheme under (C.1).

M-GIKF: Estimate Update

Define:

- $(\widehat{\mathbf{x}}_{k|k-1}^{n}, \widehat{P}_{k}^{n})$: Estimate (state) at sensor n of \mathbf{x}_{k} based on *information* till time k-1
- n_k^{\rightarrow} : Neighbor of sensor n at time k w.r.t. $A^e(k)$.

With estimate swapping: swap $(\widehat{\mathbf{x}}_{k|k-1}^{n}, \widehat{P}_{k}^{n})$ and $(\widehat{\mathbf{x}}_{k|k-1}^{n \to k}, \widehat{P}_{k}^{n \to k})$; With observation aggregation: sensor n collects: $\mathbf{y}_{k}^{\mathcal{I}_{n}^{k}}$

Update Rule:

$$\widehat{\mathbf{x}}_{k+1|k}^{n} = \mathbb{E}\left[\mathbf{x}_{k+1} \mid \widehat{\mathbf{x}}_{k|k-1}^{n,\vec{k}}, \widehat{P}_{k}^{n,\vec{k}}, \mathbf{y}_{k}^{\mathcal{I}_{n}^{k}}\right]$$

$$\widehat{P}_{k+1}^{n} = \mathbb{E}\left[\left(\mathbf{x}_{k+1} - \widehat{\mathbf{x}}_{k+1|k}^{n}\right) \left(\mathbf{x}_{k+1} - \widehat{\mathbf{x}}_{k+1|k}^{n}\right)^{T} \mid \widehat{\mathbf{x}}_{k|k-1}^{n,\vec{k}}, \widehat{P}_{k}^{n,\vec{k}}, \mathbf{y}_{k}^{\mathcal{I}_{n}^{k}}\right]$$

M-GIKF: Estimate Update (Contd.)

- The filtering steps can be implemented through time-varying Kalman filter recursions
- The sequence $\{\widehat{P}_k^n\}$ of conditional predicted error covariance matrices at sensor n satisfies the random Riccati recursion:

$$\widehat{P}_{k+1}^{n} = \mathcal{F}\widehat{P}_{k}^{n_{k}^{\rightarrow}}\mathcal{F}^{T} + \mathcal{Q} - \mathcal{F}\widehat{P}_{k}^{n_{k}^{\rightarrow}}\mathcal{C}_{n}^{T}\left(\mathcal{C}_{n}\widehat{P}_{k}^{n_{k}^{\rightarrow}}\mathcal{C}_{n}^{T} + \mathcal{R}_{n}\right)^{-1}\mathcal{C}_{n}\widehat{P}_{k}^{n_{k}^{\rightarrow}}\mathcal{F}^{T}$$

- The sequence $\{\widehat{P}_k^n\}$ is random due to the random neighborhood selection functions n_k^{\to} and \mathcal{I}_n^k
- The goal is to study asymptotic properties of $\{\widehat{P}_k^n\}$ at every sensor n In what sense $\{\widehat{P}_k^n\}$ is stable
 - In what sense they reach agreement

Switched Riccati Iterates

Let \mathfrak{P} denote a generic subset of $[1, \dots, N]$. **Define**:

- $\mathcal{C}_{\mathfrak{P}}$: The stack of \mathcal{C}_j 's for all $j \in \mathfrak{P}$
- $f_{\mathfrak{P}}(\cdot)$: The Riccati operator given by

$$f_{\mathfrak{P}}(X) = \mathcal{F}X\mathcal{F}^{T} + \mathcal{Q} - \mathcal{F}X\mathcal{C}_{\mathfrak{P}}^{T} \left(\mathcal{C}_{\mathfrak{P}}X\mathcal{C}_{\mathfrak{P}}^{T} + \mathcal{R}_{n}\right)^{-1} \mathcal{C}_{\mathfrak{P}}X\mathcal{F}^{T}$$

The conditional prediction error covariances are then updated as:

$$\widehat{P}_n(k+1) = f_{\mathcal{I}_k^n}\left(\widehat{P}_{n_k^{\rightarrow}}(k)\right), \quad \forall n$$

Remark 3. The sequence $\{\widehat{P}_n(k)\}\$ evolves as a random Riccati iterate with non-stationary switching.

Assumptions on the Signal Model

We impose the following global assumptions on the signal/observation model:

- Stabilizability-Assumption (S.1): The pair $(\mathcal{F}, \mathcal{Q}^{1/2})$ is stabilizable. The non-degeneracy (positive definiteness) of \mathcal{Q} ensures this.
- Global Detectability-Assumption (D.1): The pair $(\mathcal{C}, \mathcal{F})$ is detectable, where $\mathcal{C} = [\mathcal{C}_1^T \cdots \mathcal{C}_N^T]^T$.

Remark 4. We do not assume local detectability at each agent. Assumption (D.1) is required even by the centralized estimator to achieve a stable estimation error. We show that under rather weak conditions on the inter-sensor communication, the global detectability assumption is also sufficient for our distributed scheme (the M-GIKF) to achieve stable estimation errors at each sensor.

M-GIKF: Main Results on Convergence

Theorem 1. Consider the M-GIKF under assumptions (S.1), (D.1), (C.1)-(C.3). Then, (1) For each n, the sequence of conditional error covariances $\{\widehat{P}_n(k)\}$ is stochastically bounded,

$$\lim_{J \to \infty} \sup_{k \in \mathbb{T}_+} \mathbb{P}(\|\widehat{P}_n(k)\| \ge J) = 0.$$
(1)

(2) Let q be a uniformly distributed random variable on $[1, \dots, N]$ independent of the sequences $\{A^e(k)\}$ and $\{\mathcal{I}_n^k\}$. Then, the sequence $\{\widehat{P}_q(k)\}$ converges weakly to an invariant distribution $\mu^{\overline{\gamma}}$ on \mathbb{S}^N_+ , i.e.,

$$\widehat{P}_q(k) \Longrightarrow \mu^{\overline{\gamma}}.$$
 (2)

(3) The performance approaches the centralized one exponentially over $\bar{\gamma}$.

Proof Methodology

- An appropriate stationary modification of the switched Riccati iterate governing the covariance evolution leads to a hypothetical Random Dynamical System (RDS) in the sense of Arnold.
- The RDS thus constructed is shown to be order preserving and strongly sublinear.
- Together with the global detectability and network assumptions, the weak convergence of the stationary RDS is established.
- The ergodicity of the actual covariance sequence $\{\widehat{P}_n(k)\}$ is then applied to obtain the same convergence results with the above RDS.

Conclusions

- Stability of distributed filtering errors is established under connectivity of the network and global detectability.
- The analysis requires a new approach to the random Riccati equation (with non-stationary switching).
- Distributional convergence of the random Riccati equation is established;
- Approaching centralized performance exponentially fast over the intersensor communication rate.