Joint Disparity and Optical Flow by Correspondence Growing

Jan Čech, Radu Horaud

INRIA Rhône-Alpes Grenoble, France

Stereo Disparity and Optical Flow \Rightarrow **Scene Flow** \boxed{NRIA}

INPUT: two stereo sequences from calibrated and synchronized cameras in a narrow baseline setup

OUTPUT: disparity and optical flow maps \Rightarrow 3D scene flow

Scene Flow Estimation

- Stereo disparity and optical flow image correspondence problem
 - Assuming calibration of cameras \Rightarrow 3D scene flow
- No assumptions on rigidity of the scene
- Camera static or moving

(but stereo-rig geometry fixed, calibration known)

Scene Flow Estimation

- The task: given X^t , find X^{t+1}
 - Reconstruct as many points as possible

 \Rightarrow Stereo and optical flow problems constraint each other

Example of the Results

horizontal optical flow map

Vertical optical flow map

Correspondence Problem

- Ambiguity of the correspondence problem What helps?
 - Epipolar constraint
 - Spatial smoothness (but occlusions, object and motion boundaries)
 - Neigbouring pixels usually have similar disparities, optical flow
 - Temporal smoothness (but occlusions)
 - None of the disparity and optical flow maps change abruptly
- Explicit regularization Global energy minimization
 - Often used in the literature \Rightarrow MRF, variational formulation
 - Computationally intensive
 - Artifacts caused by the prior model winning over the weak data
- Discriminability based
 - Finds unambiguous parts of the solution \Rightarrow semi-dense matching

Seed Growing Approach

- Basic Ideas:
 - Set of initial correspondences (seeds)
 - Other correspondences found in a neigbourhood of these seeds (points which are close have similar disparity and optical flow)
 - New correspondences found become new seeds
- Seed growing stereo algorithm [Cech-PAMI-2010]
 - Tradeoff between global energy methods and greedy local methods, the growing process constraints possible solution
 - Robust against wrong seeds
 - Very fast (search space reduction), $\mathcal{O}(n^3)
 ightarrow \mathcal{O}(n^2)$
 - Semi-dense (not fully dense), but identifies ambiguous (textureless) regions

Correspondence growing in Stereo

- Stereo (2 still images only)
- a correspondence seed: $s = (x_L, x_R, y)$

$$p^* = \arg \max_{p \in \mathcal{N}(s)} \operatorname{corr}(p)$$

If $\operatorname{corr}(p^*) > \tau$,
accept a new match.

Growing the Scene Flow

- Growing disparity + optical flow at once
- Correspondence seed: $s = (x_L^1, x_R^1, y^1, x_L^2, x_R^2, y^2)$
- disparity map for t = 1 is given
- seeds obtained by matching Harris points + LK tracker
- similarity: $\operatorname{corr}(p) = \frac{1}{3}(c_{LR}^{22} + c_L^{12} + c_R^{12})$

Results: Synthetic ground-truth experiment

Synthetic stereo sequence (textured plane moving)

Joint disparity and optical flow better performance than independently

Results: Real data (1)

- Static camera
 - INRIA dataset

Results: Real data (2)

- Moving camera
 - pedestrian dataset by ETH Zurich

Conclusions

- Allows large displacement between frames (>30 pixels)
- Occlusion boundaries well preserved, no smoothing artifacts
- Disparity maps are temporally coherent (better results than frame by frame stereo)
- Optical flow maps are more precise than in a single camera setup
- Fast (VGA image in ~ 1.5 s), not a significant extra cost w.r.t. the stereo
 - Low algorithmic complexity due to search space reduction:

 $\mathcal{O}(n^5) \to \mathcal{O}(n^2)$

- Results are not fully dense, but semi-dense only
- Extended version of this algorithm in CVPR 2011
 - Algorithm incorporated in the pipeline for processing a stereo sequence with motion prediction
 - Experimental comparison with State-of-the-art methods of scene-flow, spatiotemporal stereo, and optical flow

