Low-complexity predictive lossy compression of hyperspectral and ultraspectral images

A. Abrardo<sup>1</sup>, M. Barni<sup>1</sup>, E. Magli<sup>2</sup> <sup>1</sup>University of Siena, Italy <sup>2</sup>Politecnico di Torino, Italy



# Outline

Motivation: onboard lossy compression

- Proposed compression algorithm
- Experimental results
- Conclusions

## **Onboard compression**

### Low complexity

- Low buffering requirements
- State-of-the-art compression efficiency
- Should cover bit-rates from 0.5 to 3 bpp
- Some error containment



## State-of-the-art

□ 3D transform coding (e.g., JPEG 2000 Part 2)

- → spectral transform (wavelet, KLT, ...)
- → works well at low bit-rates
- → high complexity (transform, coding, R/D optimization)
- → requires line-based spatial transform to accommodate buffering requirements
- 3D prediction
  - → works well at high bit-rates (near-lossless compression)
  - → requires a block coder to go below 1 bpp

### Decorrelation stage: 3D spatial/spectral predictor

- very low complexity (comparable with lossless compression)
- What can we do to improve performance at low bit-rates?
  - Proposed approach: truly lossy compression of prediction residuals
    - improved quantization
    - R/D optimization

# Prediction

### Prediction is performed independently on 16x16 blocks



- → A block is predicted from the colocated (decoded) block in the previous band
- → A single predictor, defined by two parameters, is used for all samples in the block → low complexity
- → Provides error containment

# Prediction

■ Let r<sup>T</sup> be the vector of samples of the reference (decoded) block, and x<sup>T</sup> the vector of samples of the current block

 $\rightarrow$  let m<sub>r</sub>=mean(r) and m<sub>x</sub>=mean(x)



Linear prediction model:

 $x^{T} \approx \alpha (r^{T} - m_{r}) + m_{x}$ 

with  $\boldsymbol{\alpha}$  minimizing prediction error variance over the block

### Quantization

Scalar uniform quantization followed by entropy coding

→ near-optimal at high rates, not at low rates

Quantization with deadzone

 $\rightarrow$  near-optimal at low rates, not at high rates

We decided to use Uniform-Threshold Quantization (UTQ)

→ near-optimal at all rates, slightly more complex

# UTQ

It is a scalar quantizer in which the intervals are uniform

→ but the reconstruction values are taken as the centroids of each interval (red dots), and not the midpoint (green dots)



# **R/D** optimization

Idea: certain 16x16 blocks can be predicted extremely well

 $\rightarrow$ we do not encode the prediction error  $\rightarrow$  SKIP mode

- In particular:
  - $\rightarrow$  after prediction, we compute the variance of the prediction error, D  $\Delta^2$

 $\rightarrow$  we compare D with a threshold:  $D \ge \frac{\Delta}{\Delta}$ 

- if D exceeds the threshold, we encode the prediction error
- → otherwise we simply write the prediction parameter for the block

# Coding

### Coding of prediction residuals

- Mapped prediction residuals are coded using a Golomb power-of-two code
- → Code parameter selection for each sample is based on the accumulated magnitude of unmapped residuals over a window of past samples

## Results

#### Dataset

- → Aviris raw images (Yellowstone ), sc0 scene (680x512x224)
- → **AIRS** sounder image, *granule9*, 135x90x1501
- We look at PSNR
- We compare with
  - → JPEG 2000 Part 2 with spectral DWT (VM8.6)
    - full 3D R/D optimization, no line-based transform
  - near-lossless compression using same predictor and entropy coder, but scalar uniform quantizer and no R/D optimization

## **AVIRIS**



### AIRS



# Visual quality

### □ original (*sc0* band 63)



# Visual quality

### □ reconstructed (0.14 bpp)



## Visual quality

### **JPEG**



## More on visual quality

### □ Scalar quantization in pixel domain

- $\rightarrow$  errors are independent from pixel to pixel
- $\rightarrow$  no blocking artifacts
- → no "cross-talk" (quantization error on one "big" transform coefficient can bias the reconstructed value of several neighboring "small" pixels)

## Conclusions

Proposed prediction-based algorithm for onboard lossy compression

- → performance equal or better than state-of-the-art
- complexity and memory requirements significantly
  lower
  - ~10 times fewer operation than JPEG2000 with spectral DWT
- → still room for improvement
  - block/arithmetic coding
  - optimal band ordering
  - rate control

Algorithm under evaluation for spectral imager carried on ESA ExoMars rover

## UTQ - details

- The reconstruction process requires to estimate the variance of the prediction error
  - → using a Laplacian assumption, we get this parameter as the ratio of the number of coefficients N1 and N2 quantized to values 1 and 2 by a scalar uniform quantizer
  - → then we calculate a correction term as follows:

$$T = \frac{1 - \gamma e^{-\gamma} / (1 - e^{-\gamma})}{\gamma}$$

$$\gamma = \log(N1/N2)$$