Image Compression Using the Iteration-Tuned and Aligned Dictionary

Joaquin Zepeda, Christine Guillemot and Ewa Kijak

INRIA Rennes - Bretagne Atlantique

- ICASSP 2011 -

Tuesday May 24, 2010

1 Introduction – Sparse representations

2 Design issues

æ

イロト イヨト イヨト イヨト

1 Introduction – Sparse representations

2 Design issues

3 Results

æ

イロト イヨト イヨト イヨト

Sparse representations:

- y: the signal vector.
- **D** : the *dictionary*, OVERCOMPLETE, with columns called *atoms*.
- x: the *sparse representation fewest* atoms, *good* approximation.
- **r**: approximation error or *residue*.

• Very difficult to solve! *Iterative* pursuit algorithms commonly used instead, *eg.*, *Matching Pursuit (MP)*:

Application to image compression

- \bullet Representation ${\bf x}$ is compact version of ${\bf y}.$
- Design issues:
 - Dictionary choice? ITAD: New, learnt, structured dictionary.
 - Atom distribution across image? New, global rate-distortion based criterion
 - Sparse vector encoding? DPCM encoding of block mean, uniform quantization + Huffman coding for coefficients, fixed-length code for atom indices.

Introduction – Sparse representations

2 Design issues

- Dictionary choice
- Atom distribution across image

3 Results

.∋...>

Introduction – Sparse representations

2 Design issues

Dictionary choice

• Atom distribution across image

3 Results

B ▶ < B ▶

OVERCOMPLETENESS

Refers to the *fat* shape of matrix **D**.

OVERCOMPLETENESS

Refers to the *fat* shape of matrix \mathbf{D} .

Overcompleteness originates signal *sparsity*,

OVERCOMPLETENESS

Refers to the *fat* shape of matrix \mathbf{D} .

- Overcompleteness originates signal *sparsity*,
- yet it is computationally complex,

OVERCOMPLETENESS

Refers to the *fat* shape of matrix D.

- Overcompleteness originates signal sparsity,
- yet it is computationally complex,
- 3 and increases atom index coding *rate*.

OVERCOMPLETENESS

Refers to the *fat* shape of matrix D.

- Overcompleteness originates signal sparsity,
- yet it is computationally complex,
- and increases atom index coding rate.
- ⇒ Structure the dictionary (constrain atom selection) to address computational and complexity issues: the *Iteration-Tuned and Aligned Dictionary.*

Change the dictionary in each MP iteration.

If **D** and $\mathbf{D}^i \forall i$ all have N atoms . . .

Change the dictionary in each MP iteration.

If **D** and $\mathbf{D}^i \forall i$ all have N atoms . . .

Change the dictionary in each MP iteration.

If **D** and $\mathbf{D}^i \forall i$ all have N atoms ... \Rightarrow *ITD* $L \times$ *more overcomplete*.

Zepeda et al. (INRIA)

Change the dictionary in each MP iteration.

If **D** and $\mathbf{D}^i \forall i$ all have N atoms . . .

- \Rightarrow *ITD L*× *more overcomplete*.
- \Rightarrow Comparable complexity under MP.

Change the dictionary in each MP iteration.

If **D** and $\mathbf{D}^i \forall i$ all have N atoms . . .

- \Rightarrow *ITD L*× *more overcomplete*.
- \Rightarrow Comparable complexity under MP.
- \Rightarrow Comparable atom index coding rate $log_2(N)$ (fixed-length code).

Iteration-Tuned Dictionary (ITD)

- Layered structure, one \mathbf{D}^i per layer i.
- *Training*? Top-down approach simplifies training.

Alignment of Residual Subspaces:

- Residual subspaces of a given atom are of reduced dimensionality.
- Union of residual subspaces spans entire space.
- Use rotation matrix to

Alignment of Residual Subspaces:

- Residual subspaces of a given atom are of reduced dimensionality.
- Union of residual subspaces spans entire space.
- Use rotation matrix to
 - \Rightarrow Rotate residual subspaces to align them.
 - \Rightarrow Align also their principal components.

- One alignment matrix per atom.
- Each dictionary exists in reduced residual space: $\mathbf{D}^{i\prime} \in \mathbb{R}^{d-i+1}$

Introduction – Sparse representations

2 Design issues

- Dictionary choice
- Atom distribution across image

3 Results

.∋...>

Introduction – Sparse representations

2 Design issues

- Dictionary choice
- Atom distribution across image

3 Results

э

- ∢ ∃ →

• Standard approach (local):

$$\underset{L}{\operatorname{argmin}} L \text{ s.t. } |\mathbf{y} - \tilde{\mathbf{y}}^L|^2 \le d \cdot \epsilon^2.$$

- Need to choose the sparsities L_n for each block \mathbf{y}_n , $n = 1, \dots, B$.
- Global rate-distortion based formulation:

$$\underset{L_1,\ldots,L_B}{\operatorname{argmin}}\sum_{n=1}^B |\mathbf{y}_n - \tilde{\mathbf{y}}_n^{L_n}|^2 \text{ s.t. } \sum_{n=1}^B \operatorname{R}(\mathcal{Y}_n^{L_n}) \leq \Psi,$$

- **1** Initialize all sparsities to zero: $\forall n, L_n = 0$.
- Ind block offering the largest reduction in distortion per bit

$$\beta = \underset{n}{\operatorname{argmax}} \frac{|\mathbf{y}_n - \tilde{\mathbf{y}}_n^{L_n}|^2 - |\mathbf{y}_n - \tilde{\mathbf{y}}_n^{L_n+1}|^2}{\operatorname{R}\left((a_{n,L_n+1}, \tilde{\gamma}_{n,L_n+1})\right)},$$

- Incorporate new atom to the approximation $\tilde{\mathbf{y}}_{\beta}$ of the chosen block, L_β ← L_β + 1.
- Repeat image bit budget is exhausted.

Introduction – Sparse representations

2 Design issues

æ

イロト イヨト イヨト イヨト

Dataset

• The data set: 545 different subjects from the FERET dataset.

- ► Train set: 445 training images
- *Test set:* 100 test images.

Figure 1: Sample images from the FERET dataset.

Zepeda et al. (INRIA)

FULL IMAGE CODEC - quantitative

- Experimental (measured rate / distortion) rate-distortion curves.
- Atom/coefficient encoding: very simple (non-optimized), yet outperforms JPEG2000.
- Gain comes from ITAD transform.

FULL IMAGE CODEC - qualitative

Zepeda et al. (INRIA)

21 / 26

Design issues

- What transformation to apply to y?
- Block sparsity selection ?
- Atom / coefficient quantization?

$\mathbf{x} \iff \{(a_i, \gamma_i)\}_{i=1}^L$

Results

Design issues

- **1** What transformation to apply to y? *ITAD*.
- Block sparsity selection ?
- Atom / coefficient quantization?

$\mathbf{x} \iff \{(a_i, \gamma_i)\}_{i=1}^L$

Results

 $\mathbf{x} \iff \{(a_i, \gamma_i)\}_{i=1}^L$

Design issues

- **1** What transformation to apply to y? *ITAD*.
- Block sparsity selection ? New global, rate-distortion-based approach.
- Atom / coefficient quantization?

Results

 $\mathbf{x} \iff \{(a_i, \gamma_i)\}_{i=1}^L$

Design issues

- **1** What transformation to apply to y? *ITAD*.
- Block sparsity selection ? New global, rate-distortion-based approach.
- Atom / coefficient quantization? Standard approach.

Results

Global vs. local block sparsity selection

Proposed, global rate-distortion sparsity selection vs. reference RMSE-threshold method.

- More uniform atom distribution.
- Less uniform error distribution.

	Our method	Reference method
Rate	0.5 bpp	0.5 bpp
PSNR (dB)	36.40	35.77
Mean spar- sity	2.07	1.92

- *Block mean:* encoded with DPCM + entropy encoder.
- Mean-removed blocks y are encoded with ITAD transform.
- Very simple codec! Gain due to ITAD transform.

- One alignment matrix per atom.
- Each dictionary exists in reduced residual space: $\mathbf{D}^{i\prime} \in \mathbb{R}^{d-i+1}$
- Signal space dictionaries are $\mathbf{D}^{i} = (\phi_{a_{1}}^{1} \cdot \ldots \cdot \phi_{a_{i-1}}^{i-1}) \mathbf{D}^{i'} \in \mathbb{R}^{d}$
- ... and define a *tree structure*.

- One alignment matrix per atom.
- Each dictionary exists in reduced residual space: $\mathbf{D}^{i\prime} \in \mathbb{R}^{d-i+1}$
- Signal space dictionaries are $\mathbf{D}^{i} = (\boldsymbol{\phi}_{a_{1}}^{1} \cdot \ldots \cdot \boldsymbol{\phi}_{a_{i-1}}^{i-1}) \mathbf{D}^{i'} \in \mathbb{R}^{d}$
- ... and define a *tree structure*.

ITAD Example

Node ∅

Node {44}

Node {11}

Node {54}

Node {11, 46, 41}

- Three paths through the ITAD (signal-space) tree, layers $1, \ldots, 4.$
- 64 atoms per component dictionary $/ 8 \times 8$ blocks.
- Dictionaries display frequential hierarchy / parent atom dependence.

(日) (同) (三) (三)

Zepeda et al. (INRIA)

Image Compression Using ITAD

26 / 26