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Closed-loop image prediction

H.264/AVC Intra Prediction
 homogeneous regions
 contours (if any of modes support the orientation)

more complex structures and textural regions
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Closed-loop image prediction

H.264/AVC Intra Prediction
 homogeneous regions
 contours (if any of modes support the orientation)

more complex structures and textural regions

Template Matching
 to cope with the H.264/AVC intra prediction lacks

Sparse Approximations
 a generalization of template matching
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h.264/AVC intra prediction
Propagating pixel values along a specified direction using 
prior encoded samples from spatially neighbouring pixels
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h.264/AVC intra prediction
Propagating pixel values along a specified direction using 
prior encoded samples from spatially neighbouring pixels
 Intra-16x16 with 4 prediction modes (DC + 3 directional)

 Intra-4x4 with 9 prediction modes

(DC + 8 directional)
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TEMPLATE MATCHING

The best candidate block is selected with
 the minimum distance between template and candidate 

block neighbourhood
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Template matching -- example

An additional prediction mode in H.264/AVC (Intra-4x4)
 up to 11.3% bit-rate saving (Tan et al. ICIP’06)
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Template matching -- example

An additional prediction mode in H.264/AVC (Intra-4x4)
 up to 11.3% bit-rate saving (Tan et al. ICIP’06)

Averaging multiple predictors (larger and directional template)
 more than 15% bit-rate saving (Tan et al. CCNC’07)
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SPARSE PREDICTION

A linear combination approximation of the template
 weighting coefficients are calculated with a greedy sparse 

approximation algorithm such as OMP
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notation

: stacked sample values of region S = B U C

: compacted data vector (support region C)

: actual values of the current block B
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notation

N MA ´ÎR
cA
tA

: stacked luminance values of all patches in W

: compacted dictionary (corresponds to region C)

: compacted dictionary (corresponds to region B)
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SPARSE PREDICTION
Support region approximation with a constraint:
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SPARSE PREDICTION
Support region approximation with a constraint:

The selected sparsity level needs to be transmitted so that 
the decoder can exactly do the same prediction
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SPARSE PREDICTION
Support region approximation with a constraint:

The selected sparsity level needs to be transmitted so that 
the decoder can exactly do the same prediction

The predicted signal: 
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NON-NEGATIVE MATRIX FACTORIZATION

NMF: Low-rank representation of high-dimensional data
• Dimensionality reduction
• Data mining
• Noise removal
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NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix                    and 

NMF tries to find matrix factors                     and                   

N LB ´ÎR ( )M min N,L<
N MA ´ÎR M LX ´ÎR
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Given a non-negative matrix                    and 

NMF tries to find matrix factors                     and                   
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NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix                    and 

NMF tries to find matrix factors                     and

Multiplicative update equations [Lee and Seung, 2000]          

N LB ´ÎR ( )M min N,L<
N MA ´ÎR M LX ´ÎR
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IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form
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1min b Ax subject to A 0, x 0
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IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form

Idea: Fix A and b,
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DICTIONARY CONSTRUCTION

N MA ´ÎR
cA
tA

: stacked luminance values of all patches in W

: compacted dictionary (corresponds to region C)

: compacted dictionary (corresponds to region B)
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IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form

Idea: Fix A and b,
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IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form

Idea: Fix A and b,
Find an NMF representation of the support region, and 
approximate the unkown block with the same parameters

2

2A,x

1min b Ax subject to A 0, x 0
2
é ù- ³ ³ê úë û

r

r r r



27

IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form

Idea: Fix A and b,
Find an NMF representation of the support region, and 
approximate the unkown block with the same parameters
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IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form

Idea: Fix A and b,
Find an NMF representation of the support region, and 
approximate the unkown block with the same parameters
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IMAGE PREDICTION BASED-ON NMF
We can write NMF cost function in the vector form

Idea: Fix A and b,
Find an NMF representation of the support region, and 
approximate the unkown block with the same parameters
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30EXPERIMENTAL RESULTS
COMPRESSION EFFICIENCY

Barbara (512x512)Foreman (CIF) Cameraman (256x256)

OMP is iterated 8 iterations. Iteration number is Huffman encoded.
Prediction residue is transform encoded as in JPEG. (8x8 block size.)
The quantization is weighted by a factor (QP) varying between 10…90.



31EXPERIMENTAL RESULTS
RECONSTRUCTION QUALITY

Sparse Approx.

(32.63dB @0.53bpp )

Template Matching

(31.29dB @0.56bpp)

NMF

(33.68dB @0.46bpp)



32EXPERIMENTAL RESULTS
PREDICTION QUALITY

Sparse Approx.
26.14db @QP=30

Template Matching
23.30db @QP=30

NMF
24.37db @QP=30



33EXPERIMENTAL RESULTS
PREDICTION QUALITY

Sparse Approx.
26.14db @QP=30

Template Matching
23.30db @QP=30

NMF
24.37db @QP=30

Impose a sparsity 
constraint on NMF
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IMAGE PREDICTION BASED-ON NMF
Constraint: Use only k-NN patches, and keep track of 
the sparse vectors to optimize the prediction (k = 1...K)
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IMAGE PREDICTION BASED-ON NMF
Constraint: Use only k-NN patches, and keep track of 
the sparse vectors to optimize the prediction (k = 1...K)
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IMAGE PREDICTION BASED-ON NMF
Constraint: Use only k-NN patches, and keep track of 
the sparse vectors to optimize the prediction (k = 1...K)

The selected k value needs to be transmitted so that the 
decoder can run with the same number of patches
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IMAGE PREDICTION BASED-ON NMF
Constraint: Use only k-NN patches, and keep track of 
the sparse vectors to optimize the prediction (k = 1...K)

The selected k value needs to be transmitted so that the 
decoder can run with the same number of patches

The predicted signal:
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IMAGE PREDICTION BASED-ON NMF
Computational load is reduced with sparsity constraint
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IMAGE PREDICTION BASED-ON NMF
Computational load is reduced with sparsity constraint

 more prediction modes can be introduced

The selected mode needs to be signalled so that the 
decoder can do the same prediction



42EXPERIMENTAL RESULTS
PREDICTION QUALITY with Sparsity

Original H.264 intra
@QP=10

Sparse Approx.
@QP=10

Sparse NMF
@QP=10



43EXPERIMENTAL RESULTS
PREDICTION QUALITY with Sparsity

Original H.264 intra
@QP=10

Sparse Approx.
@QP=10

Sparse NMF
@QP=10



44EXPERIMENTAL RESULTS
COMPRESSION EFFICIENCY

Barbara (512x512)

OMP is iterated 8 iterations, also K= 8. (Huffman encoded)
Prediction residue is transform encoded. 4x4 block size.
Best prediction mode and k value is selected by an RD cost function

Roof (512x512)
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conclusion
A spatial texture prediction method is introduced
 in the context of a data dimensionality reduction 

method
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conclusion
A spatial texture prediction method is introduced
 in the context of a data dimensionality reduction 

method
 with sparsity constraints, it works even better
 can be applied also to image inpainting and loss 

concealment applications

 An effective alternative when compared to other methods

Questions ?
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