IMAGE PREDICTION BASED ON

 NON-NEGATIVE MATRIX

 NON-NEGATIVE MATRIX FACTORIZATION

Mehmet TÜRKAN Christine GUILLEMOT

IEEE Int. Conf. on Acoustics, Speech and Signal Processing
May 22-27, 2011
Prague, Czech Republic

AGENDA

Problem Addressed

Prior work on Image Prediction
... Template Matching
... Sparse Approximations
A new approach based on ... Non-negative Matrix Factorization
Experimental Results
conclusion

CLOSED-LOOP IMAGE PREDICTION

H.264/AVC Intra Prediction
\checkmark homogeneous regions
\checkmark contours (if any of modes support the orientation)
x more complex structures and textural regions

CLOSED-LOOP IMAGE PREDICTION

H.264/AVC Intra Prediction
\checkmark homogeneous regions
\checkmark contours (if any of modes support the orientation)
x more complex structures and textural regions

Template Matching
\checkmark to cope with the H.264/AVC intra prediction lacks

centre de recherche RENNES - BRETAGNE ATLANTICUE

CLOSED-LOOP IMAGE PREDICTION

H.264/AVC Intra Prediction
\checkmark homogeneous regions
\checkmark contours (if any of modes support the orientation)
x more complex structures and textural regions

Template Matching
\checkmark to cope with the H.264/AVC intra prediction lacks
Sparse Approximations
\checkmark a generalization of template matching
\square centre de recherche
RENNES - BRETAGNE ATLANTICUE

H.264/AVC INTRA PREDICTION

Propagating pixel values along a specified direction using prior encoded samples from spatially neighbouring pixels

H.264/AVC INTR A PREDICTION

Propagating pixel values along a specified direction using prior encoded samples from spatially neighbouring pixels
\checkmark Intra-16x16 with 4 prediction modes (DC +3 directional)

3 (plane)

H.264/AVC INTR A PREDICTION

Propagating pixel values along a specified direction using prior encoded samples from spatially neighbouring pixels
\checkmark Intra-16x16 with 4 prediction modes (DC +3 directional)

\checkmark Intra-4x4 with 9 prediction modes
(DC +8 directional)

\square centre de recherche
RENNES - BRETACNE ATLANTICUE

TEMPLATE MATCHING

The best candidate block is selected with
\checkmark the minimum distance between template and candidate block neighbourhood
\square
et en automatique
centre de recherche
RENNES - BRETAENE ATLANTICUE

TEMPLATE MATCHING - EXAMPLE

An additional prediction mode in H.264/AVC (Intra-4x4)
\checkmark up to 11.3% bit-rate saving (Tan et al. ICIP'06)

TEMPLATE MATCHING - EXAMPLE

An additional prediction mode in H.264/AVC (Intra-4x4)
\checkmark up to 11.3% bit-rate saving (Tan et al. ICIP'06)
Averaging multiple predictors (larger and directional template)
\checkmark more than 15% bit-rate saving (Tan et al. CCNC'07)
\square
et en automatique
centre de recherche
RENNES - BRETAENE ATLANTICUE

SPARSE PREDICTION

A linear combination approximation of the template
\checkmark weighting coefficients are calculated with a greedy sparse approximation algorithm such as OMP

$I N R I A$
centre de recherche
RENNES - BRETAGNE ATLANTICUE

NOTATION

$\overrightarrow{\mathrm{b}} \in \mathbf{R}^{\mathrm{N}}$
: stacked sample values of region $S=B U C$
$\overrightarrow{\mathrm{b}}_{\mathrm{c}}$: compacted data vector (support region C) b_{t} : actual values of the current block B

NOTATION

$\mathrm{A} \in \mathbf{R}^{\mathrm{N} \times \mathrm{M}}$: stacked luminance values of all patches in W
A_{c} : compacted dictionary (corresponds to region C)
A_{t} : compacted dictionary (corresponds to region B)
\square

SPARSE PREDICTION

Support region approximation with a constraint:

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{\text {opt }}=\min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} & \text { subject to } \\
& \min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} \text { and }\|\overrightarrow{\mathrm{x}}\|_{0} \leq \mathrm{K}
\end{aligned}
$$

SPARSE PREDICTION

Support region approximation with a constraint:

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{\text {opt }}=\min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} & \text { subject to } \\
& \min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} \text { and }\|\overrightarrow{\mathrm{x}}\|_{0} \leq \mathrm{K}
\end{aligned}
$$

The selected sparsity level needs to be transmitted so that the decoder can exactly do the same prediction

SPARSE PREDICTION

Support region approximation with a constraint:

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{\text {opt }}=\min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} & \text { subject to } \\
& \min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} \text { and }\|\overrightarrow{\mathrm{x}}\|_{0} \leq \mathrm{K}
\end{aligned}
$$

The selected sparsity level needs to be transmitted so that the decoder can exactly do the same prediction

The predicted signal: $\hat{b}_{t}=A_{t} \vec{x}_{\mathrm{opt}}$

NON-NEGATIVE MATRIX FACTORIZATION

NMF: Low-rank representation of high-dimensional data

- Dimensionality reduction
- Data mining
- Noise removal

NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix $B \in \mathbf{R}^{\mathrm{N} \times \mathrm{L}}$ and $\mathrm{M}<\min (\mathrm{N}, \mathrm{L})$ NMF tries to find matrix factors $A \in \mathbf{R}^{\mathrm{N} \times \mathrm{M}}$ and $\mathrm{X} \in \mathbf{R}^{\mathrm{M} \times \mathrm{L}}$

NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix $\mathrm{B} \in \mathbf{R}^{\mathrm{N} \times \mathrm{L}}$ and $\mathrm{M}<\min (\mathrm{N}, \mathrm{L})$ NMF tries to find matrix factors $\mathrm{A} \in \mathbf{R}^{\mathrm{N} \times \mathrm{M}}$ and $\mathrm{X} \in \mathbf{R}^{\mathrm{M} \times \mathrm{L}}$

$$
\min _{A, X}\left[\frac{1}{2}\|\mathrm{~B}-\mathrm{AX}\|_{\mathrm{F}}^{2}\right] \text { subject to } \mathrm{A} \geq 0, \mathrm{X} \geq 0
$$

NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix $B \in \mathbf{R}^{\mathrm{N} \times \mathrm{L}}$ and $\mathrm{M}<\min (\mathrm{N}, \mathrm{L})$ NMF tries to find matrix factors $A \in \mathbf{R}^{\mathrm{N} \times \mathrm{M}}$ and $\mathrm{X} \in \mathbf{R}^{\mathrm{M} \times \mathrm{L}}$

$$
\min _{A, X}\left[\frac{1}{2}\|B-A X\|_{F}^{2}\right] \text { subject to } A \geq 0, X \geq 0
$$

Multiplicative update equations [Lee and Seung, 2000]

$$
\mathrm{X}_{\mathrm{a}, \mathrm{\mu}} \leftarrow \mathrm{X}_{\mathrm{a}, \mu} \frac{\left(\mathrm{~A}^{\mathrm{T}} \mathrm{~B}\right)_{\mathrm{a}, \mu}}{\left(\mathrm{~A}^{\mathrm{T}} \mathrm{AX}\right)_{\mathrm{a}, \mu}+10^{-9}} \quad \text { and } \quad \mathrm{A}_{\mathrm{i}, \mathrm{a}} \leftarrow \mathrm{~A}_{\mathrm{i}, \mathrm{a}} \frac{\left(\mathrm{BX}^{\mathrm{T}}\right)_{\mathrm{i}, \mathrm{a}}}{\left(\mathrm{AXX}^{\mathrm{T}}\right)_{\mathrm{i}, \mathrm{a}}+10^{-9}}
$$

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{\mathrm{A}, \overrightarrow{\mathrm{x}}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{\mathrm{A}, \overrightarrow{\mathrm{x}}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

Idea: Fix A and b ,

dictionary construction

$\mathrm{A} \in \mathbf{R}^{\mathrm{N} \times \mathrm{M}}$: stacked luminance values of all patches in W
A_{c} : compacted dictionary (corresponds to region C)
A_{t} : compacted dictionary (corresponds to region B)
\square

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{\mathrm{A}, \overrightarrow{\mathrm{x}}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

Idea: Fix A and b ,

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{\mathrm{A}, \overrightarrow{\mathrm{x}}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

Idea: Fix A and b ,
Find an NMF representation of the support region, and approximate the unkown block with the same parameters

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{\mathrm{A}, \overrightarrow{\mathrm{x}}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

Idea: Fix A and b ,
Find an NMF representation of the support region, and approximate the unkown block with the same parameters

$$
\min _{\vec{x}: \vec{x} \geq 0}\left[\frac{1}{2}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2}\right]
$$

$\|\| \nabla$

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{A, \vec{x}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

Idea: Fix A and b ,
Find an NMF representation of the support region, and approximate the unkown block with the same parameters

$$
\min _{\vec{x}: \bar{x} \geq 0}\left[\frac{1}{2}\left\|\vec{b}_{c}-A_{c} \vec{x}\right\|_{2}^{2}\right] \quad x_{a} \leftarrow x_{a} \frac{\left(A_{c}^{T} \vec{b}_{c}\right)_{a}}{\left(A_{c}^{T} A_{c} \vec{x}\right)_{a}+10^{-9}}, a=1 \ldots M
$$

IMAGE PREDICTION BASED-ON NMF

We can write NMF cost function in the vector form

$$
\min _{A, \vec{x}}\left[\frac{1}{2}\|\overrightarrow{\mathrm{~b}}-\mathrm{A} \overrightarrow{\mathrm{x}}\|_{2}^{2}\right] \quad \text { subject to } \mathrm{A} \geq 0, \overrightarrow{\mathrm{x}} \geq 0
$$

Idea: Fix A and b ,
Find an NMF representation of the support region, and approximate the unkown block with the same parameters

$$
\begin{gathered}
\min _{\overrightarrow{\mathrm{x}}: \overline{\mathrm{x}} \geq 0}\left[\frac{1}{2}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2}\right] \quad \mathrm{x}_{\mathrm{a}} \leftarrow \mathrm{x}_{\mathrm{a}} \frac{\left(\mathrm{~A}_{\mathrm{c}}^{\mathrm{T}} \overrightarrow{\mathrm{~b}}_{\mathrm{c}}\right)_{\mathrm{a}}}{\left(\mathrm{~A}_{\mathrm{c}}^{\mathrm{T}} \mathrm{~A}_{\mathrm{c}}\right)_{\mathrm{a}}+10^{-9}}, \mathrm{a}=1 \ldots \mathrm{M} \\
\hat{\mathrm{~b}}_{\mathrm{t}}=\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}_{\text {opt }}
\end{gathered}
$$

$\|\left|{ }_{\|}\right|$

EXPERIMENTAL RESULTS COMPRESSION EFFICIENCY

Foreman (CIF)

Cameraman (256x256)

OMP is iterated 8 iterations. Iteration number is Huffman encoded. Prediction residue is transform encoded as in JPEG. (8x8 block size.) The quantization is weighted by a factor (QP) varying between $10 . . .90$.
\square centre de recherche
RENNES - bRETAGNE ATLANTI®UE

RECONSTRUCTION QUALITY

Template Matching
(31.29dB @0.56bpp)

Sparse Approx.
(32.63dB @0.53bpp) (33.68dB @0.46bpp)

institut national					
derecherche					

EXPERIMENTAL RESULTS
 \title{
EXPERIMENTAL RESULTS PREDICTION QUALITY
} PREDICTION QUALITY
}

Template Matching
23.30db @QP=30

Sparse Approx.
26.14db @QP=30

NMF
24.37db @QP=30

Template Matching
23.30db @QP=30

Sparse Approx.
26.14db @QP=30

NMF
24.37db @QP=30

Impose a sparsity constraint on NMF

$\mathcal{R I N R I A}$

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction ($k=1$... K)

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction ($k=1$...K)

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{\text {opt }}=\min _{\overrightarrow{\mathrm{x}} \times \mathrm{x} \geq 0}\left[\frac{1}{2}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2}\right] & \text { subject to } \\
& \min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} \text { and }\|\overrightarrow{\mathrm{x}}\|_{0} \leq \mathrm{K}
\end{aligned}
$$

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction ($k=1$...K)

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{\text {opt }}=\min _{\overrightarrow{\mathrm{x}} \mathrm{x} \geq 0}\left[\frac{1}{2}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2}\right] & \text { subject to } \\
& \min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} \text { and }\|\overrightarrow{\mathrm{x}}\|_{0} \leq \mathrm{K}
\end{aligned}
$$

The selected k value needs to be transmitted so that the decoder can run with the same number of patches

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction ($k=1$... K)

$$
\begin{aligned}
\overrightarrow{\mathrm{x}}_{\text {opt }}=\min _{\vec{x}: \bar{x} \geq 0}\left[\frac{1}{2}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{c}}-\mathrm{A}_{\mathrm{c}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2}\right] & \text { subject to } \\
& \min _{\overrightarrow{\mathrm{x}}}\left\|\overrightarrow{\mathrm{~b}}_{\mathrm{t}}-\mathrm{A}_{\mathrm{t}} \overrightarrow{\mathrm{x}}\right\|_{2}^{2} \text { and }\|\overrightarrow{\mathrm{x}}\|_{0} \leq \mathrm{K}
\end{aligned}
$$

The selected \boldsymbol{k} value needs to be transmitted so that the decoder can run with the same number of patches

The predicted signal: $\hat{b}_{t}=A_{t} \vec{x}_{\text {opt }}$
\square

IMAGE PREDICTION BASED-ON NMF

Computational load is reduced with sparsity constraint

IMAGE PREDICTION BASED-ON NMF

Computational load is reduced with sparsity constraint
\rightarrow more prediction modes can be introduced

IMAGE PREDICTION BASED-ON NMF

Computational load is reduced with sparsity constraint
\rightarrow more prediction modes can be introduced

mode 2

mode 3

mode 5

Support regionCurent block

IMAGE PREDICTION BASED-ON NMF

Computational load is reduced with sparsity constraint
\rightarrow more prediction modes can be introduced

mode 1

mode 2

mode 3

mode 4

mode 5

mode 9

Support region

The selected mode needs to be signalled so that the decoder can do the same prediction

EXPERIMENTAL RESULTS PREDICTION QUALITY WITH SPARSITY

Original

H. 264 intra
@QP=10

Sparse Approx. @QP=10

Sparse NMF @QP=10

EXPERIMENTAL RESULTS PREDICTION QUALITYY WITH SPARSITY

Original
H. 264 intra
@QP=10
Sparse Approx. @QP=10
Sparse NMF @QP=10

RINRIA

COMPRESSION EFFICIENCY

Barbara (512×512)

Roof (512x512)

OMP is iterated 8 iterations, also $\mathrm{K}=8$. (Huffman encoded) Prediction residue is transform encoded. 4×4 block size.
Best prediction mode and k value is selected by an RD cost function
centre de recherche
RENNES - BRETAGNE ATLANTICUE

CONCLUSION

A spatial texture prediction method is introduced
\checkmark in the context of a data dimensionality reduction method

CONCLUSION

A spatial texture prediction method is introduced
\checkmark in the context of a data dimensionality reduction method
\checkmark with sparsity constraints, it works even better

CONCLUSION

A spatial texture prediction method is introduced
\checkmark in the context of a data dimensionality reduction method
\checkmark with sparsity constraints, it works even better can be applied also to image inpainting and loss concealment applications

CONCLUSION

A spatial texture prediction method is introduced
\checkmark in the context of a data dimensionality reduction method
\checkmark with sparsity constraints, it works even better
\checkmark can be applied also to image inpainting and loss concealment applications
\square An effective alternative when compared to other methods

centre de recherche
RENNES - BRETAGNE ATLANTICUE

CONCLUSION

A spatial texture prediction method is introduced
\checkmark in the context of a data dimensionality reduction method
\checkmark with sparsity constraints, it works even better
\checkmark can be applied also to image inpainting and loss concealment applications
\square An effective alternative when compared to other methods
Questions?

