IMAGE PREDICTION BASED ON NON-NEGATIVE MATRIX FACTORIZATION

Mehmet TÜRKAN Christine GUILLEMOT

ICASSP 2011 IEEE Int. Conf. on Acoustics, Speech and Signal Processing May 22-27, 2011 Prague, Czech Republic

> INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Problem Addressed

Príor work on Image Prediction ... Template Matching ... Sparse Approximations A new approach based on ... Non-negative Matrix Factorization Experimental Results

Conclusion

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

H.264/AVC Intra Prediction

- ✓ homogeneous regions
- \checkmark contours (if any of modes support the orientation)
- more complex structures and textural regions

INSTITUT NATIONA DE RECHERCH EN INFORMATIQUI ET EN AUTOMATIQUI

H.264/AVC Intra Prediction

- ✓ homogeneous regions
- \checkmark contours (if any of modes support the orientation)
- more complex structures and textural regions

Template Matching

✓ to cope with the H.264/AVC intra prediction lacks

H.264/AVC Intra Prediction

- ✓ homogeneous regions
- \checkmark contours (if any of modes support the orientation)
- more complex structures and textural regions

Template Matching

✓ to cope with the **H.264/AVC** intra prediction lacks

Sparse Approximations

✓ a generalization of template matching

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Propagating pixel values along a specified direction using prior encoded samples from spatially neighbouring pixels

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

H.264/AVC INTRA PREDICTION

Propagating pixel values along a specified direction using prior encoded samples from spatially neighbouring pixels

Intra-16x16 with 4 prediction modes (DC + 3 directional)

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

H.264/AVC INTRA PREDICTION

Propagating pixel values along a specified direction using prior encoded samples from spatially neighbouring pixels

✓ Intra-16x16 with 4 prediction modes (DC + 3 directional)

The best candidate block is selected with

 ✓ the minimum distance between template and candidate block neighbourhood

> INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An additional prediction mode in H.264/AVC (Intra-4x4)

✓ up to 11.3% bit-rate saving (*Tan et al. ICIP'06*)

An additional prediction mode in **H.264/AVC** (Intra-4x4)

✓ up to 11.3% bit-rate saving (Tan et al. ICIP'06)

Averaging multiple predictors (larger and directional template)

✓ more than 15% bit-rate saving (Tan et al. CCNC'07)

A linear combination approximation of the template

 ✓ weighting coefficients are calculated with a greedy sparse approximation algorithm such as OMP

ΝΠΙΑ

$$\begin{split} \vec{b} \in \pmb{R}^{N} &: \text{stacked sample values of region S = B U C} \\ \vec{b}_{c} &: \text{compacted data vector (support region C)} \\ \vec{b}_{t} &: \text{actual values of the current block B} \end{split}$$

 $\begin{array}{ll} A \in {{{\bf{R}}^{N \times M}}} & : \text{stacked luminance values of all patches in W} \\ A_c & : \text{compacted dictionary (corresponds to region C)} \\ A_t & : \text{compacted dictionary (corresponds to region B)} \end{array}$

INSTITUT NATION DE RECHERC EN INFORMATIQ ET EN AUTOMATIQ

Support region approximation with a constraint:

 $\vec{x}_{opt} = \min_{\vec{x}} \left\| \vec{b}_c - A_c \vec{x} \right\|_2^2 \text{ subject to}$ $\min_{\vec{x}} \left\| \vec{b}_t - A_t \vec{x} \right\|_2^2 \text{ and } \left\| \vec{x} \right\|_0 \le K$

INSTITUT NATION DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Support region approximation with a constraint:

 $\vec{x}_{opt} = \min_{\vec{x}} \left\| \vec{b}_c - A_c \vec{x} \right\|_2^2 \text{ subject to}$ $\min_{\vec{x}} \left\| \vec{b}_t - A_t \vec{x} \right\|_2^2 \text{ and } \left\| \vec{x} \right\|_0 \le K$

The **selected sparsity level** needs to be transmitted so that the decoder can exactly do the same prediction

> INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Support region approximation with a constraint:

 $\vec{x}_{opt} = \min_{\vec{x}} \left\| \vec{b}_c - A_c \vec{x} \right\|_2^2 \text{ subject to}$ $\min_{\vec{x}} \left\| \vec{b}_t - A_t \vec{x} \right\|_2^2 \text{ and } \left\| \vec{x} \right\|_0 \le K$

The **selected sparsity level** needs to be transmitted so that the decoder can exactly do the same prediction

The predicted signal:
$$\hat{b}_t = A_t \vec{x}_{opt}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

NMF: Low-rank representation of high-dimensional data

- Dimensionality reduction
- Data mining
- Noise removal

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix $B \in \mathbf{R}^{N \times L}$ and $M < \min(N, L)$ NMF tries to find matrix factors $A \in \mathbf{R}^{N \times M}$ and $X \in \mathbf{R}^{M \times L}$

> INSTITUT NATIONAL DE RECHERCH EN INFORMATIQUI ET EN AUTOMATIQUI

NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix $B \in \mathbf{R}^{N \times L}$ and $M < \min(N, L)$ NMF tries to find matrix factors $A \in \mathbf{R}^{N \times M}$ and $X \in \mathbf{R}^{M \times L}$

$$\min_{A,X} \left[\frac{1}{2} \left\| B - AX \right\|_{F}^{2} \right] \text{ subject to } A \ge 0, X \ge 0$$

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix $B \in \mathbf{R}^{N \times L}$ and $M < \min(N, L)$ NMF tries to find matrix factors $A \in \mathbf{R}^{N \times M}$ and $X \in \mathbf{R}^{M \times L}$

$$\min_{A,X} \left[\frac{1}{2} \left\| B - AX \right\|_{F}^{2} \right] \text{ subject to } A \ge 0, X \ge 0$$

Multiplicative update equations [Lee and Seung, 2000]

$$X_{a,\mu} \leftarrow X_{a,\mu} \frac{\left(A^{T}B\right)_{a,\mu}}{\left(A^{T}AX\right)_{a,\mu} + 10^{-9}} \quad \text{and} \quad A_{i,a} \leftarrow A_{i,a} \frac{\left(BX^{T}\right)_{i,a}}{\left(AXX^{T}\right)_{i,a} + 10^{-9}}$$

$$\min_{A,\vec{x}} \left[\frac{1}{2} \| \vec{b} - A\vec{x} \|_2^2 \right] \text{ subject to } A \ge 0, \ \vec{x} \ge 0$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

$$\min_{A,\vec{x}} \left[\frac{1}{2} \| \vec{b} - A\vec{x} \|_2^2 \right] \quad \text{subject to} \quad A \ge 0, \ \vec{x} \ge 0$$

Idea: Fix A and b,

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

 $\begin{array}{ll} A \in {{{\bf{R}}^{N \times M}}} &: {\rm{stacked luminance values of all patches in W}} \\ A_c & A_c &: {\rm{compacted dictionary (corresponds to region C)}} \\ A_t &: {\rm{compacted dictionary (corresponds to region B)}} \end{array}$

INSTITUT NATION DE RECHERCI EN INFORMATIQU ET EN AUTOMATIQU

$$\min_{A,\vec{x}} \left[\frac{1}{2} \| \vec{b} - A\vec{x} \|_2^2 \right] \quad \text{subject to} \quad A \ge 0, \ \vec{x} \ge 0$$

Idea: Fix A and b,

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

$$\min_{A,\vec{x}} \left[\frac{1}{2} \| \vec{b} - A\vec{x} \|_2^2 \right] \text{ subject to } A \ge 0, \ \vec{x} \ge 0$$

Idea: Fix A and b,

Find an NMF representation of the support region, and approximate the unkown block with the same parameters

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

$$\min_{A,\vec{x}} \left[\frac{1}{2} \left\| \vec{b} - A\vec{x} \right\|_2^2 \right] \text{ subject to } A \ge 0, \ \vec{x} \ge 0$$

Idea: Fix A and b,

Find an NMF representation of the support region, and approximate the unkown block with the same parameters

$$\min_{\vec{\mathbf{x}}:\vec{\mathbf{x}}\geq 0} \left[\frac{1}{2} \left\| \vec{\mathbf{b}}_{c} - \mathbf{A}_{c} \vec{\mathbf{x}} \right\|_{2}^{2} \right]$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

$$\min_{A,\vec{x}} \left[\frac{1}{2} \| \vec{b} - A\vec{x} \|_2^2 \right] \quad \text{subject to} \quad A \ge 0, \ \vec{x} \ge 0$$

Idea: Fix A and b,

Find an NMF representation of the support region, and approximate the unkown block with the same parameters

$$\min_{\vec{x}:\vec{x}\geq 0} \left[\frac{1}{2} \| \vec{b}_{c} - A_{c} \vec{x} \|_{2}^{2} \right] \qquad x_{a} \leftarrow x_{a} \frac{\left(A_{c}^{T} \vec{b}_{c} \right)_{a}}{\left(A_{c}^{T} A_{c} \vec{x} \right)_{a} + 10^{-9}}, \ a = 1...M$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

$$\min_{A,\vec{x}} \left[\frac{1}{2} \left\| \vec{b} - A\vec{x} \right\|_2^2 \right] \text{ subject to } A \ge 0, \ \vec{x} \ge 0$$

Idea: Fix A and b,

Find an NMF representation of the support region, and approximate the unkown block with the same parameters

$$\begin{split} \min_{\vec{x}:\vec{x}\geq 0} \left[\frac{1}{2} \left\| \vec{b}_{c} - A_{c} \vec{x} \right\|_{2}^{2} \right] & x_{a} \leftarrow x_{a} \frac{\left(A_{c}^{T} \vec{b}_{c} \right)_{a}}{\left(A_{c}^{T} A_{c} \vec{x} \right)_{a} + 10^{-9}}, \ a = 1...M \\ \hat{b}_{t} = A_{t} \vec{x}_{opt} \end{split}$$

EXPERIMENTAL RESULTS COMPRESSION EFFICIENCY

Foreman (CIF)

Barbara (512x512) Cameraman (256x256)

OMP is iterated 8 iterations. Iteration number is Huffman encoded. Prediction residue is transform encoded as in JPEG. (8x8 block size.) The quantization is weighted by a factor (QP) varying between 10...90.

EXPERIMENTAL RESULTS RECONSTRUCTION QUALITY

 Template Matching
 Sparse Approx.
 NMF

 (31.29dB @0.56bpp)
 (32.63dB @0.53bpp)
 (33.68dB @0.46bpp)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EXPERIMENTAL RESULTS PREDICTION QUALITY

Template Matching 23.30db @QP=30

Sparse Approx. 26.14db @QP=30 **NMF** 24.37db @QP=30

EXPERIMENTAL RESULTS PREDICTION QUALITY

Template Matching 23.30db @QP=30

Sparse Approx. 26.14db @QP=30 **NMF** 24.37db @QP=30

Impose a sparsity constraint on NMF

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction (k = 1...K)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction (k = 1...K)

$$\vec{x}_{opt} = \min_{\vec{x}:\vec{x}\geq 0} \left[\frac{1}{2} \| \vec{b}_c - A_c \vec{x} \|_2^2 \right] \text{ subject to}$$
$$\min_{\vec{x}} \| \vec{b}_t - A_t \vec{x} \|_2^2 \text{ and } \| \vec{x} \|_0 \le K$$

INSTITUT NATION DE RECHERCI EN INFORMATIQU ET EN AUTOMATIQU

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction (k = 1...K)

$$\vec{x}_{opt} = \min_{\vec{x}:\vec{x}\geq 0} \left[\frac{1}{2} \| \vec{b}_c - A_c \vec{x} \|_2^2 \right] \text{ subject to}$$
$$\min_{\vec{x}} \| \vec{b}_t - A_t \vec{x} \|_2^2 \text{ and } \| \vec{x} \|_0 \leq K$$

The **selected k value** needs to be transmitted so that the decoder can run with the same number of patches

IMAGE PREDICTION BASED-ON NMF

Constraint: Use only k-NN patches, and keep track of the sparse vectors to optimize the prediction (k = 1...K)

$$\vec{\mathbf{x}}_{opt} = \min_{\vec{\mathbf{x}}:\vec{\mathbf{x}} \ge 0} \left[\frac{1}{2} \left\| \vec{\mathbf{b}}_{c} - \mathbf{A}_{c} \vec{\mathbf{x}} \right\|_{2}^{2} \right] \text{ subject to}$$

$$\min_{\vec{\mathbf{x}}} \left\| \vec{\mathbf{b}}_{t} - \mathbf{A}_{t} \vec{\mathbf{x}} \right\|_{2}^{2} \text{ and } \left\| \vec{\mathbf{x}} \right\|_{0} \le \mathbf{K}$$

The **selected k value** needs to be transmitted so that the decoder can run with the same number of patches

The predicted signal:
$$\hat{b}_t = A_t \vec{x}_{opt}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

 \rightarrow more prediction modes can be introduced

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

 \rightarrow more prediction modes can be introduced

 \rightarrow more prediction modes can be introduced

The **selected mode** needs to be signalled so that the decoder can do the same prediction

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EXPERIMENTAL RESULTS PREDICTION QUALITY WITH SPARSITY

Original

H.264 intra @QP=10

Sparse Approx. @QP=10 Sparse NMF @QP=10

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EXPERIMENTAL RESULTS PREDICTION QUALITY WITH SPARSITY

Original

H.264 intra @QP=10

Sparse Approx. @QP=10 Sparse NMF @QP=10

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

EXPERIMENTAL RESULTS COMPRESSION EFFICIENCY

OMP is iterated 8 iterations, also K= 8. (Huffman encoded) Prediction residue is transform encoded. 4x4 block size. Best prediction mode and k value is selected by an RD cost function

> INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 ✓ in the context of a data dimensionality reduction method

> INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

- ✓ in the context of a data dimensionality reduction method
- \checkmark with sparsity constraints, it works even better

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

- ✓ in the context of a data dimensionality reduction method
- \checkmark with sparsity constraints, it works even better
- ✓ can be applied also to image inpainting and loss concealment applications

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

- ✓ in the context of a data dimensionality reduction method
- \checkmark with sparsity constraints, it works even better
- can be applied also to image inpainting and loss concealment applications

□ An effective alternative when compared to other methods

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

- ✓ in the context of a data dimensionality reduction method
- \checkmark with sparsity constraints, it works even better
- ✓ can be applied also to image inpainting and loss concealment applications

□ An effective alternative when compared to other methods

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

