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Motivation

• Describing computer programs can be done 
at different levels of abstraction

Assembly C RVC-CAL Functional 
languages

low highlevel of abstraction 

reusability
analyzability
verifiability
productivity

implementation 
efficiency
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The RVC-CAL language

• A dataflow language that is a subset of the 
CAL language originally developed at UC 
Berkeley

• The RVC-CAL language has been 
standardized by ISO (ISO/IEC23001-4) in  
2009
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The RVC-CAL language
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The RVC-CAL language

action
state
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The RVC-CAL language

The main differences between the RVC-CAL 
and traditional dataflow models of computation:
•Allows conditional execution
+ Makes the language applicable to a wider set 
of applications
- Makes the language harder to analyze for 
humans and compilers
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Topic of this work

The main point of our work is to improve the 
efficiency of programs written in RVC-CAL

Assembly C RVC-CAL

higher lowerimplementation efficiency  
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Method of this work

• In RVC-CAL, each dataflow actor runs 
completely independently

• Basically this is good, as it improves the 
modularity of the language

• In practice, the actors within a program are 
very dependent on each other’s behaviour

• We try to automatically discover these 
interdependencies and optimize the 
implementation with this information
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Method of this work

• Our approach is based on dynamic program 
analysis

• In dynamic analysis the behaviour of the 
program is examined as it is running

• Based on information acquired from 
analysis, a new, more efficient version of the 
program can be generated
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1. Finding the data dependencies
2. Detecting the strands
3. Detecting the actor signatures
4. Code generation
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Finding the data dependencies

• The first step in our approach is to 
automatically find the signals in the network 
that cause conditional execution (control 
signals)

• The detection rule for these signals is

If the value of data incoming from 
FIFO f affects the behaviour of an 
actor, f is a control signal
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1. Finding the data dependencies
2. Detecting the strands
3. Detecting the actor signatures
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• Knowing the control signals in the actor 
network, we want to express the behaviour 
of the network as a function of the control 
signal tokens

• To be able to observe and control the 
network behaviour, we insert special actors 
named token gates to control signals

Detecting the strands
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Detecting the strands

• A strand is a sequence of actor invocations. 
Each value coming through the token gate 
invokes 1 strand at run-time

• The strands can be detected automatically 
with the help of token gating: 

1) Let a token throught the gate and observe 
its value

2) record the set of actors that it invokes
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Detecting the strands

• However, this is not enough
• Generally, actors can behave in many 

different ways for each value passing 
through the token gate

• Therefore, we also need to find all the 
different actor behaviours for each strand
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Detecting the actor signatures

• The behaviour of a CAL actor can be fully 
predicted before its execution by looking at 
the following properties
1. Values of state variables
2. Number of tokens at input ports
3. Value of tokens at input ports

• These form the signature of the actor
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Detecting the actor signatures

• At the network analysis stage, the actor 
signatures are recorded before letting the 
actor execute

• For every signature, the sequence of 
executed actions is recorded
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3. Detecting the actor signatures
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Code generation

• Now we have modeled the functionality of 
the application with gate token values and 
actor signatures

• Next, we generate the C code of a token-
gated run-time program

• Make a switch-statement for each token 
gate value and signature
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Results

MPEG-4 part 2 decoders
”MVG” 2.11x speedup
”RVC” 1.14x speedup
”Serial” 1.33x speedup
”Xilinx” 1.20x speedup
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Conclusion

• We have presented a fully automated 
approach to speed up implementations of 
programs written in RVC-CAL

• The average speedup provided by our 
approach is 1.5x on the used set of RVC-
CAL networks
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Directions for future work

• Based on the lessons learned from the 
dynamic analysis approach, a static analysis 
approach could be developed

• Improving the code generation would 
provide better speedups

• Make the method applicable to programs 
with several data dependencies
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Thanks for your attention.

Questions?


