
Jani Boutellier

Scheduling of CAL actor networks
based on dynamic code analysis

Jani Boutellier, Olli Silvén

University of Oulu, Finland

Mickaël Raulet

INSA Rennes, France

Jani Boutellier

Motivation

• Describing computer programs can be done
at different levels of abstraction

Assembly C RVC-CAL Functional
languages

low highlevel of abstraction

reusability
analyzability
verifiability
productivity

implementation
efficiency

Jani Boutellier

The RVC-CAL language

• A dataflow language that is a subset of the
CAL language originally developed at UC
Berkeley

• The RVC-CAL language has been
standardized by ISO (ISO/IEC23001-4) in
2009

Jani Boutellier

The RVC-CAL language

Actor
A

Actor C

Actor B
FIFO 1

FIFO 2

FIFO 3 FIFO 4

Jani Boutellier

The RVC-CAL language

action
state

Jani Boutellier

The RVC-CAL language

The main differences between the RVC-CAL
and traditional dataflow models of computation:
•Allows conditional execution
+ Makes the language applicable to a wider set
of applications
- Makes the language harder to analyze for
humans and compilers

Jani Boutellier

Topic of this work

The main point of our work is to improve the
efficiency of programs written in RVC-CAL

Assembly C RVC-CAL

higher lowerimplementation efficiency

Jani Boutellier

Method of this work

• In RVC-CAL, each dataflow actor runs
completely independently

• Basically this is good, as it improves the
modularity of the language

• In practice, the actors within a program are
very dependent on each other’s behaviour

• We try to automatically discover these
interdependencies and optimize the
implementation with this information

Jani Boutellier

Method of this work

• Our approach is based on dynamic program
analysis

• In dynamic analysis the behaviour of the
program is examined as it is running

• Based on information acquired from
analysis, a new, more efficient version of the
program can be generated

Jani Boutellier

1. Finding the data dependencies
2. Detecting the strands
3. Detecting the actor signatures
4. Code generation

Jani Boutellier

Finding the data dependencies

• The first step in our approach is to
automatically find the signals in the network
that cause conditional execution (control
signals)

• The detection rule for these signals is

If the value of data incoming from
FIFO f affects the behaviour of an
actor, f is a control signal

Jani Boutellier

Jani Boutellier

Jani Boutellier

Jani Boutellier

1. Finding the data dependencies
2. Detecting the strands
3. Detecting the actor signatures
4. Code generation

Jani Boutellier

• Knowing the control signals in the actor
network, we want to express the behaviour
of the network as a function of the control
signal tokens

• To be able to observe and control the
network behaviour, we insert special actors
named token gates to control signals

Detecting the strands

Jani Boutellier

Actor A

Actor
B

control signal

Detecting the strands

Jani Boutellier

Actor A

Actor
B

token
gate

Detecting the strands

Jani Boutellier

Detecting the strands

• A strand is a sequence of actor invocations.
Each value coming through the token gate
invokes 1 strand at run-time

• The strands can be detected automatically
with the help of token gating:

1) Let a token throught the gate and observe
its value

2) record the set of actors that it invokes

Jani Boutellier

Detecting the strands

• However, this is not enough
• Generally, actors can behave in many

different ways for each value passing
through the token gate

• Therefore, we also need to find all the
different actor behaviours for each strand

Jani Boutellier

1. Finding the data dependencies
2. Detecting the strands
3. Detecting the actor signatures
4. Code generation

Jani Boutellier

Detecting the actor signatures

• The behaviour of a CAL actor can be fully
predicted before its execution by looking at
the following properties
1. Values of state variables
2. Number of tokens at input ports
3. Value of tokens at input ports

• These form the signature of the actor

Jani Boutellier

Detecting the actor signatures

• At the network analysis stage, the actor
signatures are recorded before letting the
actor execute

• For every signature, the sequence of
executed actions is recorded

Jani Boutellier

1. Finding the data dependencies
2. Detecting the strands
3. Detecting the actor signatures
4. Code generation

Jani Boutellier

Code generation

• Now we have modeled the functionality of
the application with gate token values and
actor signatures

• Next, we generate the C code of a token-
gated run-time program

• Make a switch-statement for each token
gate value and signature

Jani Boutellier

Results

MPEG-4 part 2 decoders
”MVG” 2.11x speedup
”RVC” 1.14x speedup
”Serial” 1.33x speedup
”Xilinx” 1.20x speedup

Jani Boutellier

Conclusion

• We have presented a fully automated
approach to speed up implementations of
programs written in RVC-CAL

• The average speedup provided by our
approach is 1.5x on the used set of RVC-
CAL networks

Jani Boutellier

Directions for future work

• Based on the lessons learned from the
dynamic analysis approach, a static analysis
approach could be developed

• Improving the code generation would
provide better speedups

• Make the method applicable to programs
with several data dependencies

Jani Boutellier

Thanks for your attention.

Questions?

