ROBUST AND LOW-COST CASCADED NON-LINEAR ACOUSTIC ECHO CANCELLATION

Moctar I. Mossi1, Christelle Yemdji1, Nicholas Evans1, Christophe Beaugeant2 and Philippe Degry2

EURECOM1, Intel Mobile Communications2

May 22-27, 2011
Outline

1 Introduction
 - Echo Problem
 - Acoustic Echo Cancellation

2 Acoustic Path Model
 - Modelling of Acoustic Path Component
 - Cascaded and Parallel System

3 Non-linear Acoustic Echo Cancellation
 - Minimum Mean Square Error Estimator (MMSE)
 - Least Mean Square (LMS) Adaptive Tracking

4 Tests Results and Comments
 - Variable Acoustic Path
 - Variable Delay of the Acoustic Path

5 Conclusions
Acoustic Echo Approach

Echo problem
- echo \rightarrow loudspeaker signal picked up by the microphone
- echo and network delay \rightarrow disturb communication

Approach

Acoustic Echo Cancellation (AEC)

Figure: AEC approach
Linear Acoustic Echo Cancellation

characteristics

- Linear environment:
 \[y(n) = h(n) \ast x(n) \]

- Non-linear environments:
 \[y(n) = h(n) \ast x(n) \]

Figure: Non-linear loudspeaker

Figure: Loudspeaker non-linearity effect, \[y_P(n) = x(n) + \beta x^3(n) \]

Figure: Loudspeaker non-linearity plot.
Baseline Non-linear Acoustic Echo Cancellation

characteristics
- non-linearity in acoustic path
- requires more computation capacity
- slow convergence
- depends on the model accuracy

Figure: Non-linear AEC system
Non-linearity Source and Model

non-linear part

loudspeaker
- non-linear filter
- small impulse responses
- slow variability

linear part

acoustic channel
- linear filter
- longer impulse response
- high variability

microphone
- linear filter
- small impulse response
- low variability

Figure: Proposed model
Objectives

proposed approach

- pre-processor \Rightarrow loudspeaker model [1, 2, 3]
- loudspeaker model \Rightarrow non-linear power filter [4, 5]
- power filter model from loudspeaker measurements [5]
- advantage: robustness during acoustic channel changes

Figure: Parallel non-linear AEC approach

Figure: Cascaded non-linear AEC approach
Parallel or cascaded approach?

- \(\tilde{h}_p(n) \Rightarrow \hat{h}_p(n) \ast \hat{h}(n) \)
- Parallel approach reach low minimum error
- Parallel approach re-estimate all taps during acoustic channel changes

Figure: Parallel and cascaded approach
Filter Estimation
Signal Expression

- echo signal:
 \[y_p(n) = h_p(n)x_p(n) \]
 \[y(n) = h(n) \sum_{p=1}^{P} y_p(n) \]

- estimated echo signal:
 \[\hat{y}_p(n) = \hat{h}_p(n)x_p(n) \]
 \[\hat{y}(n) = \hat{h}(n) \sum_{p=1}^{P} \hat{y}_p(n) \]

- error signal:
 \[e(n) = y(n) - \hat{y}(n) \]

Figure: Cascaded non-linear AEC system
Filters Estimation
MMSE Estimator of Filters [6]

AEC Linear Filter

\[
\hat{h} = r_{y,y_P} R_{y_P}^{-1}
\]

where:
- \(r_{y,y_P} \) : cross-correlation
- \(R_{y_P} \) : auto-correlation

Comments
- depends on the loudspeaker signal
- \(R_{y_P} \Rightarrow \) determines convergence rate

Figure: Proposed model
Filters Estimation
MMSE Estimator of Filters [6]

Pre-processor Sub-filters

\[
\hat{h}_{p_k} = (r_{y,\tilde{y}_{p_k}} - r_{y_{p\neq p_k},\tilde{y}_{p_k}}) R_{y_{p_k}}^{-1}
\] \(1\)

\(\tilde{y}_k(n) = x_{p_k}^p(n) * h(n)\)

\(r_{y,\tilde{y}_{p_k}}, r_{y_{p\neq p_k},\tilde{y}_{p_k}}\) : cross-correlation

\(R_{y_{p_k}}\) : auto-correlation

Comments

- \(r_{y_{p\neq p_k},\tilde{y}_{p_k}}\) \(\Rightarrow\) reduces performance
- correlation of input powers
- required of orthogonalization [4]

Figure: Proposed model
Filters Estimation
Adaptive Estimation \[1, 6\]

AEC Linear Filter

\[
\hat{h}(n+1) = \hat{h}(n) + \mu \hat{Y}_P(n)e(n)
\]

Pre-processor Sub-filters

\[
\hat{h}_p(n+1) = \hat{h}_p(n) + \mu_p \hat{X}_p(n)\hat{h}^T(n)e(n)
\]

Comments
- depends on the pre-processor output
- initialization: \(\exists \ p \ \text{s.t.} \ h_p(0) \neq 0 \)

Comments
- depends on the estimate of the linear filter
- stability (lower step-size)
Test Set-up

- pre-processor sub-filters
 \(P = 5 \)
- \(h_{p=1,2,3,4,5}(n) \): 100 taps
- \(h(n) \): 200 / 300 taps
- SNR (echo signal to noise ratio) 30 dB / 40 dB
Echo Path Changes (EPC) (10s)

common parameters
- initial: better performance
- 1^{st} EPC: pre-processor less accurate
- 2^{nd} EPC: pre-processor more accurate, better ERLE for N_5 than N_3
- proposed model re-converge faster and become more robust to path changes

Figure: Comparison of ERLE, 200 taps, SNR=40 dB
Echo Path Changes (EPC) (10s)

1st acoustic channel change

2nd acoustic channel change

- NLMS
- Proposed: $N_p = 3$
- Proposed: $N_p = 5$
- Power filter

13/17
Echo Path Delay Changes (EPC:10s, delay:2.5ms)

Best tests case
- initial: Similar performance
- 1st EPC: pre-processor not accurate
- 2nd EPC: pre-processor more accurate
- EPC improve the pre-processor accuracy

Figure: Comparison of ERLE, delay change, 300 taps, SNR=30 dB
Echo Path Delay Changes (EPC:10s, delay:2.5ms)

- **1st** test case: similar performance
- **2nd** test case: pre-processor more accurate

EPC improve the pre-processor accuracy

![Comparison of ERLE, delay change, 300 taps, SNR=30 dB](image)
Conclusions

- cascaded approach to N-AEC
- robustness against path changes
- robustness in delay changes

Perspectives

- reduce complexity
- pre-processor control with adaptive step-size
THANKS FOR YOUR ATTENTION
References

B. S. Nollett and D. L. Jones,
“Adaptation of a memoryless preprocessor for nonlinear acoustic echo cancelling,”
NISP, Sept 1997.

A. Stenger and W. Kellermann,
“Adaptation of a memoryless preprocessor for nonlinear acoustic echo cancelling,”

A. Guerin, G. Faucon, and R. Le Bouquin-Jeannes,
“Nonlinear acoustic echo cancellation based on volterra filters,”

F. Kuech, A. Mitnacht, and W. Kellermann,
“Nonlinear acoustic echo cancellation using adaptive orthogonalized power filters,”

M. I. Mossi, C. Yemdji, N. W. D. Evans, C. Herglotz, C. Beaugeant, and P. Degry,
“New models for characterizing non-linear distortions in mobile terminal loudspeakers,”
IWAENC, Sept 2010.

S. Haykin,
Adaptive Filter Theory 4th Ed,