

Fourier Expansion of Hammerstein Models for Nonlinear Acoustic System Identification

Sarmad Malik and Gerald Enzner

Institute of Communication Acoustics (IKA) Ruhr-Universität Bochum

26. May 2010

- 1 Motivation
- 2 Basis Functions for Nonlinear Expansion
- 3 Basis-Generic Signal Model in DFT-Domain
- 4 Equivalent Multichannel Representation
- 5 Results
- 6 Conclusions

Identification of Nonlinear Acoustic Systems

- A Hammerstein structure enables the inclusion of:
 - ► Memoryless nonlinearity
 - ▶ Linear FIR system
- Possibilities of modeling the nonlinearity in the system via, e.g.,:
 - ▶ Power series, i.e., polynomial expansion basis (traditional)
 - Odd Fourier series, i.e., an orthogonal expansion basis (proposed)
- ► Effects on ensuing equivalent multichannel system identification:
 - Quality and rate of convergence
 - ▶ Learning of the underlying system nonlinearity

Hammerstein Structure

- $ightharpoonup x_t$: Input signal
- $ightharpoonup f[\cdots]$: Memoryless nonlinearity
- ▶ $f[x_t]$: Nonlinearly mapped input signal
- \mathbf{w}_t' : Linear FIR system
- \triangleright s_t : Observation noise
- $\triangleright y_t$: Observation

- 1 Motivation
- 2 Basis Functions for Nonlinear Expansion
- 3 Basis-Generic Signal Model in DFT-Domain
- 4 Equivalent Multichannel Representation
- 5 Results
- 6 Conclusions

RUB

Resolution of Nonlinearity in Hammerstein Model

Expansion model $f[x_t]$ of the input signal x_t :

$$f[x_t] = \sum_{i=1}^{p} a_i \phi_i(x_t)$$

where $\phi_i(x_t)$ and p denotes the basis function and the order of expansion, respectively

- Types of basis functions:
 - ▶ Polynomial basis (traditional), i.e., $f[x_t] = \sum_{i=1}^P a_i x_t^i$ where a_i is the i-th polynomial coefficient
 - ▶ Fourier basis, i.e., $f[x_t] = \sum_{i=1}^p a_i \cdot \sin(\pi \cdot i \cdot \frac{x_t}{L})$

where a_i is the i-th Fourier coefficient and 2L is the fundamental period

RUB

IKA

Computation of Nonlinear Expansion Coefficients

- For a given function $f[x_t]$ in the data range, $x_t \in [-1,1]$:
 - ▶ Computation of Power series coefficients in the least squares sense via

$$a_i = \arg\min_{\tilde{a}_i} \int_{-1}^{+1} \left[f[x_t] - \sum_{i=1}^p \tilde{a}_i x_t^i \right]^2 dx_t , \forall i$$

Closed-form computation of odd Fourier series coefficients via

$$a_i = \frac{1}{L} \cdot \int_{-L}^{+L} f[x_t] \cdot \sin(\pi \cdot i \cdot \frac{x_t}{L}) dx_t , \forall i$$

► Example of the nonlinearity as a clipping function:

$$f[x_t] = \begin{cases} x_t & \text{if } |x_t| \le x_{max} \\ x_{max} & \text{if } x_t > x_{max} \\ -x_{max} & \text{if } x_t < x_{max} \end{cases}$$

where x_{max} is the clipping threshold

Fitting Ability: $x_{max} = 0.1$, p = 5, L = 1.5

- 1 Motivation
- 2 Basis Functions for Nonlinear Expansion
- 3 Basis-Generic Signal Model in DFT-Domain
- 4 Equivalent Multichannel Representation
- 5 Results
- 6 Conclusions

Block-Based Nonlinearly Mapped Input Signal

Block-based input and nonlinearly mapped signal:

$$\mathbf{x}_{\tau} = [x_{\tau R - M + 1}, \ x_{\tau R - M + 2}, \ \cdots, \ x_{\tau R}]^{H}$$

$$\mathbf{f}_{\tau} = \{ f[x_{\tau R - M + 1}], \ f[x_{\tau R - M + 2}], \ \cdots, \ f[x_{\tau R}] \}^{H}$$

with R is the block-shift and M the block-size, with au as the block-index

Compact notation for the linear combination:

$$\mathbf{f}_{\tau} = \left\{ \sum_{i=1}^{p} a_{i} \phi_{i}(x_{\tau R-M+1}), \dots, \sum_{i=1}^{p} a_{i} \phi_{i}(x_{\tau R}) \right\}^{H}$$

$$= \sum_{i=1}^{p} a_{i} \left\{ \phi_{i}(x_{\tau R-M+1}), \phi_{i}(x_{\tau R-M+2}), \dots, \phi_{i}(x_{\tau R}) \right\}^{H}$$

$$= \sum_{i=1}^{p} a_{i} \mathbf{x}_{\tau, i}$$

where $\mathbf{x}_{\tau,i} = \{\phi_i(x_{\tau R-M+1}), \ \phi_i(x_{\tau R-M+2}), \ \cdots, \ \phi_i(x_{\tau R})\}^H$

RUB

IKA

DFT-Domain Single Channel Signal Model

► Applying diagonalization and DFT-Matrix F_M to f_τ :

$$\widetilde{\mathbf{X}}_{\tau} = \operatorname{diag}\left\{\mathbf{F}_{M}\mathbf{f}_{\tau}\right\} = \sum_{i=1}^{p} a_{i}\operatorname{diag}\left\{\mathbf{F}_{M}\mathbf{x}_{\tau,i}\right\} = \sum_{i=1}^{p} a_{i}\mathbf{X}_{\tau,i}$$

where $\mathbf{X}_{\tau,i} = \operatorname{diag}\left\{\mathbf{F}_{M}\mathbf{x}_{\tau,i}\right\}$

▶ Modeling M-R non-zero coefficients of the echo path $\mathbf{w}_{\tau} = \mathbf{w}_{t=\tau R}^{'}$:

$$\mathbf{W}_{ au} = \mathbf{F}_{M} \begin{bmatrix} \mathbf{w}_{ au}^{H} & \mathbf{0}_{R} \end{bmatrix}^{H}$$

► Overlap-save convolution model of the observation $\mathbf{Y}_{\tau} = \mathbf{F}_{M} \mathbf{Q} \mathbf{y}_{\tau}$:

$$egin{aligned} \mathbf{Y}_{ au} &= \mathbf{F}_{M} \mathbf{Q} \mathbf{Q}^{H} \mathbf{F}_{M}^{-1} \widetilde{\mathbf{X}}_{ au} \mathbf{W}_{ au} + \mathbf{S}_{ au} \ &= \mathbf{G} \widetilde{\mathbf{X}}_{ au} \mathbf{W}_{ au} + \mathbf{S}_{ au} = \widetilde{\mathbf{C}}_{ au} \mathbf{W}_{ au} + \mathbf{S}_{ au} \end{aligned}$$

where $\widetilde{\mathbf{C}}_{\tau} = \mathbf{G}\widetilde{\mathbf{X}}_{\tau}$ and $\mathbf{G} = \mathbf{F}_{M}\mathbf{Q}\mathbf{Q}^{H}\mathbf{F}_{M}^{-1}$. Symbol $\mathbf{Q}^{H} = (\mathbf{0} \ \mathbf{I}_{R})^{H}$ is an $R \times M$ projection matrix and $\mathbf{y}_{\tau} = \{y_{\tau R - R + 1}, \ y_{\tau R - R + 2}, \ \cdots, \ y_{\tau R}\}^{H}$

- 1 Motivation
- 2 Basis Functions for Nonlinear Expansion
- 3 Basis-Generic Signal Model in DFT-Domain
- 4 Equivalent Multichannel Representation
- 5 Results
- 6 Conclusions

Equivalent Multichannel Structure

Substituting $\widetilde{\mathbf{X}}_{\tau} = \sum_{i=1}^{p} a_i \mathbf{X}_{\tau,i}$ for making the coefficients visible:

$$\mathbf{Y}_{ au} = \mathbf{G}\widetilde{\mathbf{X}}_{ au}\mathbf{W}_{ au} + \mathbf{S}_{ au} = \mathbf{G}\sum_{i=1}^{p} a_{i}\mathbf{X}_{ au,i}\mathbf{W}_{ au} + \mathbf{S}_{ au}$$

Expressing using matrix-vector formulation and absorbing nonlinear coefficients into the echo path:

$$\begin{split} \mathbf{Y}_{\tau} &= \mathbf{G}[\mathbf{X}_{\tau,1} \ \mathbf{X}_{\tau,2} \ \cdots \ \mathbf{X}_{\tau,p}] \left[\begin{array}{c} a_{1} \mathbf{I}_{M} \\ a_{2} \mathbf{I}_{M} \\ \vdots \\ a_{p} \mathbf{I}_{M} \end{array} \right] \mathbf{W}_{\tau} + \mathbf{S}_{\tau} &= \mathbf{G} \underline{\mathbf{X}}_{\tau} \left[\begin{array}{c} a_{1} \mathbf{W}_{\tau} \\ a_{2} \mathbf{W}_{\tau} \\ \vdots \\ a_{p} \mathbf{W}_{\tau} \end{array} \right] + \mathbf{S}_{\tau} \\ &= \underline{\mathbf{C}}_{\tau} \underline{\mathbf{W}}_{\tau} + \mathbf{S}_{\tau} \ . \end{split}$$

where
$$\underline{\mathbf{C}}_{ au} = [\mathbf{C}_{ au,1} \ \mathbf{C}_{ au,2} \ \cdots \ \mathbf{C}_{ au,p}]$$
, while $\mathbf{C}_{ au,i} = \mathbf{G}\mathbf{X}_{ au,i}$.

Equivalent Multichannel Signal Model

- 1 Motivation
- 2 Basis Functions for Nonlinear Expansion
- 3 Basis-Generic Signal Model in DFT-Domain
- 4 Equivalent Multichannel Representation
- 5 Results
- 6 Conclusions

Multichannel Adaptive Algorithm

- ► Multichannel frequency-domain adaptive filter (MCFDAF):
 - Error and update equations of MCFDAF

$$\mathbf{E}_{\tau} = \mathbf{Y}_{\tau} - \underline{\mathbf{C}}_{\tau} \widehat{\underline{\mathbf{W}}}_{\tau-1}$$
$$\widehat{\underline{\mathbf{W}}}_{\tau} = \widehat{\underline{\mathbf{W}}}_{\tau-1} + \underline{\mu} \underline{\mathbf{X}}_{\tau}^{H} \mathbf{E}_{\tau}$$

where stepsize for i-th channel $\mu_{\tau,i}$ is given as a function of the power spectral density $\Psi_{\underline{\mathbf{X}}_{\tau}\underline{\mathbf{X}}_{\tau}}$ and the individual adaptation constant in the range $0<\alpha_i<1$, i.e.,

$$\boldsymbol{\mu}_{\tau,i} = \alpha_i \boldsymbol{\Psi}_{\boldsymbol{X}_{\tau} \boldsymbol{X}_{\tau}}^{-1}$$

▶ Computation of diagonal $M \times M$ matrix $\Psi_{\underline{\mathbf{X}}_{\tau}\underline{\mathbf{X}}_{\tau}}$ by recursive averaging, i.e.,

$$\Psi_{\underline{\mathbf{X}}_{\tau}\underline{\mathbf{X}}_{\tau}} = \gamma \Psi_{\underline{\mathbf{X}}_{\tau-1}\underline{\mathbf{X}}_{\tau-1}} + (1 - \gamma)\underline{\mathbf{X}}_{\tau}\underline{\mathbf{X}}_{\tau}^{H}$$

with γ as a forgetting factor in the range $0 < \gamma < 1$

RUB

IKA

Analysis Configurations

- ▶ MCFDAF was configured to M=256 and R=64, respectively
- ▶ Linear-to-nonlinear power ratio SNR $_{NL}$ of $\sigma_{x_t}^2/\sigma_{x_t-f[x_t]}^2=5$ and $20~\mathrm{dB}$
- ► Signal-to-observation noise power ratio set to SNR= 60 dB
- ► Two types of basis expansions:
 - Power series
 - Odd Fourier series
- Performance measured with respect to:
 - lacktriangle Relative error signal attenuation ESA $=\sigma_{\mathbf{Y}_{ au}}^2/\sigma_{\mathbf{E}_{ au}}^2$
 - lackbox Inspection of the estimated nonlinear mapping $\widehat{f}[\cdots]$
- Nonlinear coefficients extracted in least-squares sense:
 - ▶ $a_i = (\mathbf{W}_{\tau}^H \widehat{\mathbf{W}}_{\tau,i}) / (\mathbf{W}_{\tau}^H \mathbf{W}_{\tau})$ where $\widehat{\mathbf{W}}_{\tau,i}$ is the estimate of the *i*-th channel

Performance Comparison: $SNR_{NL} = 5 dB$

Extracted Nonlinear Mapping: $x_{max} = 0.1$

Performance Comparison: $SNR_{NL} = 20 \text{ dB}$

Extracted Nonlinear Mapping: $x_{max} = 0.3$

- 1 Motivation
- 2 Basis Functions for Nonlinear Expansion
- 3 Basis-Generic Signal Model in DFT-Domain
- 4 Equivalent Multichannel Representation
- 5 Results
- 6 Conclusions

Conclusions

- Quasi-linear expansion of nonlinear Hammerstein models:
 - ▶ Traditional Power series
 - ▶ Odd orthogonal Fourier series
- ► Signal model in block frequency-domain:
 - Contained basis-generic derivation
 - Efficient multichannel representation based on FFT
- ► Results of multichannel adaptive identification:
 - ► Orthogonal Fourier series lines up with polynomial modeling with Gramm-Schmidt orthogonalization
 - High error signal attenuation and effective imitation of the nonlinear response