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Identification of Nonlinear Acoustic Systems

◮ A Hammerstein structure enables the inclusion of:

◮ Memoryless nonlinearity

◮ Linear FIR system

◮ Possibilities of modeling the nonlinearity in the system via, e.g.,:

◮ Power series, i.e., polynomial expansion basis (traditional)

◮ Odd Fourier series, i.e., an orthogonal expansion basis (proposed)

◮ Effects on ensuing equivalent multichannel system identification:

◮ Quality and rate of convergence

◮ Learning of the underlying system nonlinearity
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Hammerstein Structure

w
′

t

xt

st

dt
ytf [xt]

f [· · · ]

◮ xt: Input signal

◮ f [· · · ]: Memoryless nonlinearity

◮ f [xt]: Nonlinearly mapped input signal

◮ w
′

t: Linear FIR system

◮ st: Observation noise

◮ yt: Observation
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Resolution of Nonlinearity in Hammerstein Model

◮ Expansion model f [xt] of the input signal xt:

f [xt] =

p∑

i=1

aiφi(xt)

where φi(xt) and p denotes the basis function and the order of expansion,
respectively

◮ Types of basis functions:

◮ Polynomial basis (traditional), i.e., f [xt] =

p∑

i=1

aix
i
t

where ai is the i-th polynomial coefficient

◮ Fourier basis, i.e., f [xt] =

p∑

i=1

ai · sin(π · i ·
xt

L
)

where ai is the i-th Fourier coefficient and 2L is the fundamental
period
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Computation of Nonlinear Expansion Coefficients

◮ For a given function f [xt] in the data range, xt ∈ [−1, 1]:

◮ Computation of Power series coefficients in the least squares sense via

ai = argminãi

∫ +1

−1

[
f [xt] −

p∑

i=1

ãix
i
t

]2

dxt , ∀ i

◮ Closed-form computation of odd Fourier series coefficients via

ai =
1

L
·

∫ +L

−L

f [xt] · sin(π · i ·
xt

L
)dxt , ∀ i

◮ Example of the nonlinearity as a clipping function:

f [xt] =






xt if |xt| ≤ xmax

xmax if xt > xmax

−xmax if xt < xmax

where xmax is the clipping threshold
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Fitting Ability: xmax = 0.1, p = 5, L = 1.5
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Block-Based Nonlinearly Mapped Input Signal

◮ Block-based input and nonlinearly mapped signal:

xτ = [xτR−M+1, xτR−M+2, · · · , xτR]H

fτ = { f [xτR−M+1], f [xτR−M+2], · · · , f [xτR] }
H

with R is the block-shift and M the block-size, with τ as the block-index

◮ Compact notation for the linear combination:

fτ =

{
p∑

i=1

aiφi(xτR−M+1), · · · ,

p∑

i=1

aiφi(xτR)

}H

=

p∑

i=1

ai {φi(xτR−M+1), φi(xτR−M+2), · · · , φi(xτR)}
H

=

p∑

i=1

aixτ,i

where xτ,i = {φi(xτR−M+1), φi(xτR−M+2), · · · , φi(xτR)}
H
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DFT-Domain Single Channel Signal Model

◮ Applying diagonalization and DFT-Matrix FM to fτ :

X̃τ = diag {FM fτ} =

p∑

i=1

aidiag {FMxτ,i} =

p∑

i=1

aiXτ,i

where Xτ,i = diag {FMxτ,i}

◮ Modeling M − R non-zero coefficients of the echo path wτ = w
′

t=τR:

Wτ = FM

[
wH

τ 0R

]H

◮ Overlap-save convolution model of the observation Yτ = FMQyτ :

Yτ = FMQQHF−1
M X̃τWτ + Sτ

= GX̃τWτ + Sτ = C̃τWτ + Sτ

where C̃τ = GX̃τ and G = FMQQHF−1
M . Symbol QH = (0 IR)H is an

R × M projection matrix and yτ = {yτR−R+1, yτR−R+2, · · · , yτR}
H
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Equivalent Multichannel Structure

◮ Substituting X̃τ =
∑p

i=1 aiXτ,i for making the coefficients visible:

Yτ = GX̃τWτ + Sτ = G

p∑

i=1

aiXτ,iWτ + Sτ

◮ Expressing using matrix-vector formulation and absorbing nonlinear
coefficients into the echo path:

Yτ = G[Xτ,1 Xτ,2 · · · Xτ,p]




a1IM
a2IM
· · ·

apIM


Wτ + Sτ = GXτ




a1Wτ

a2Wτ

· · ·
apWτ


 + Sτ

= CτWτ + Sτ .

where Cτ = [Cτ,1 Cτ,2 · · · Cτ,p], while Cτ,i = GXτ,i.
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Equivalent Multichannel Signal Model
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Multichannel Adaptive Algorithm

◮ Multichannel frequency-domain adaptive filter (MCFDAF):

◮ Error and update equations of MCFDAF

Eτ = Yτ − CτŴτ−1

Ŵτ = Ŵτ−1 + µXH
τ Eτ

where stepsize for i-th channel µτ,i is given as a function of the power
spectral density ΨX

τ
X

τ
and the individual adaptation constant in the

range 0 < αi < 1, i.e.,

µτ,i = αiΨ
−1
X

τ
X

τ

◮ Computation of diagonal M × M matrix ΨX
τ
X

τ
by recursive

averaging, i.e.,

ΨX
τ
X

τ
= γΨX

τ−1
X

τ−1
+ (1 − γ)XτX

H
τ

with γ as a forgetting factor in the range 0 < γ < 1 16 / 23
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Analysis Configurations

◮ MCFDAF was configured to M = 256 and R = 64, respectively

◮ Linear-to-nonlinear power ratio SNRNL of σ2
xt

/σ2
xt−f [xt]

=5 and 20 dB

◮ Signal-to-observation noise power ratio set to SNR= 60 dB

◮ Two types of basis expansions:

◮ Power series

◮ Odd Fourier series

◮ Performance measured with respect to:

◮ Relative error signal attenuation ESA = σ2
Yτ

/σ2
Eτ

◮ Inspection of the estimated nonlinear mapping f̂ [· · · ]

◮ Nonlinear coefficients extracted in least-squares sense:

◮ ai = (WH
τ Ŵτ,i)/(WH

τ Wτ )

where Ŵτ,i is the estimate of the i-th channel 17 / 23
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Performance Comparison: SNRNL = 5 dB
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Extracted Nonlinear Mapping: xmax = 0.1
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Performance Comparison: SNRNL = 20 dB
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Extracted Nonlinear Mapping: xmax = 0.3
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Conclusions

◮ Quasi-linear expansion of nonlinear Hammerstein models:

◮ Traditional Power series

◮ Odd orthogonal Fourier series

◮ Signal model in block frequency-domain:

◮ Contained basis-generic derivation

◮ Efficient multichannel representation based on FFT

◮ Results of multichannel adaptive identification:

◮ Orthogonal Fourier series lines up with polynomial modeling with
Gramm-Schmidt orthogonalization

◮ High error signal attenuation and effective imitation of the nonlinear
response
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