Spatial Sound Reproduction System using Higher Order Loudspeakers

Mark A. Poletti Thushara D. Abhayapala

¹Industrial Research Ltd New Zealand

²The Australian National University Australia

ICASSP 2011

イロト 不得 とくほと くほう

Mark A. Poletti, Thushara D. Abhayapala Spatial Sound Reproduction using Higher Order Loudspeakers

Outline

3 Simulations

ъ

・聞き くほき くほう

Mark A. Poletti, Thushara D. Abhayapala Spatial Sound Reproduction using Higher Order Loudspeakers

Background

- Spatial sound reproduction systems aim to reproduce an arbitrary desired sound field within a region of space.
- The desired sound field may be generated using
 - The Kirchhoff-Helmholtz (K-H) integral (Wave Field Synthesis (WFS)), or
 - Cylindrical or spherical harmonic decompositions (higher order Ambisonics).

(人間) (人) (人) (人) (人)

Issues with Spatial Sound Reproduction

 The accuracy of sound reproduction is governed by the wavelength (λ) and the size of the region over which reproduction is required.

For wave number $k = 2\pi f/c = 2\pi/\lambda$ and reproduction radius *r* the number of required loudspeakers (*L*) in the 2D case is given approximately by

$$L \approx 2kr + 1$$

- Thus, large numbers of loudspeakers are required for the reproduction of high frequencies over significant areas.
- E.g., reproduction over 0.1 m radius at 16 kHz requires 60 loudspeakers!.
- In the 3D case: $L \approx (kr + 1)^2$.

Issues with Spatial Sound Reproduction

- Loudspeakers produce a reverberant field which corrupts the sound field within the array.
- This reverberant field can be cancelled using calibration and pre-processing but such techniques require accurate measurement of acoustic transfer functions and significant computing power.
- If loudspeakers with omnidirectional and radial dipole directivities are used, it is possible to produce a sound field within the loudspeaker array and no exterior field, by using the K-H integral. (Exterior Field Cancellation).

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶

Nyquist Frequency of the Array

- Nyquist frequency of the array is the corresponding frequency where transducers are a half wavelength apart.
- Exterior cancellation is possible below the Nyquist frequency of the array. At frequencies at or above Nyquist, the K-H approach fails and a nonzero exterior sound field is produced
- For 2D case with omnidirectional loudspeakers, $f^{(0)} = c(L-1)/4\pi r_L$.
- Literature (e.g., Vries, Ahrens etal, Poletti etal) shows that fixed-directivity speakers can reduce exterior field.

・ロト ・回ト ・ヨト ・ヨト

Summary of Issues with Spatial Sound Reproduction

- Large numbers of loudspeakers are required for the reproduction of high frequencies over significant areas.
- Loudspeakers produce a reverberant field (due to exterior field) which corrupts the sound field within the array.

()

Key Contributions from this Paper

- Use higher order variable directivity loudspeakers for sound reproduction. (2D case in this paper)
- Show that a circular array of Nth order loudspeakers produces a Nyquist frequency of N times that of a omnidirectional array.
- Hence, the reproduction area, or equivalently, the bandwidth of accurate reconstruction over a specified area, is increased by a factor N.
- Alternatively, the sound reproduction can be carried out using 1/Nth of the number of simple loudspeakers.

ヘロト ヘ回ト ヘヨト ヘヨト

This paper is not about ...

We do not consider *how to design a Nth order variable directivity Loudspeaker*

< 回 > < 三 > < 三

Mark A. Poletti, Thushara D. Abhayapala Spatial Sound Reproduction using Higher Order Loudspeakers

Desired Interior Sound field

The desired sound field (2D case) in the interior of the loudspeaker array can be written as

$$p(r,\phi,k) = \sum_{n=-\infty}^{\infty} A_n(k) J_n(kr) e^{jn\phi}$$

- J_n(·) is the *n*th cylindrical Bessel function, and A_n(k) is the *n*th expansion coefficient.
- Due to the properties of the Bessel function, this expansion can be truncated to order N ≈ kr for a radius r and wavenumber k.
- With *L* loudspeakers, L = 2N + 1.

ヘロト ヘ回ト ヘヨト ヘヨト

Desired Interior Sound field

The desired sound field (2D case)

$$p(r,\phi,k) = \sum_{m=-N}^{N} A_n(k) J_n(kr) e^{jn\phi}$$

 We wish to reproduce the above field within a circular array of *L* loudspeakers positioned at (*r*_ℓ, φ_ℓ), ℓ = 1,..., *L*.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶

Zeroth order Sound reproduction System

In a simple zeroth order loudspeaker sound reproduction system, each loudspeaker is a monopole given by $H_0^{(1)}(k||\mathbf{r} - \mathbf{r}_{\ell}||)$ with the expansion

$$H_0^{(1)}(k||\mathbf{r} - \mathbf{r}_{\ell}||) = \begin{cases} \sum_{m=-\infty}^{\infty} J_m(kr) H_m^{(1)}(kr_{\ell}) \, e^{jm(\phi - \phi_{\ell})} \text{ for } r < r_{\ell} \\ \\ \sum_{m=-\infty}^{\infty} J_m(kr_{\ell}) H_m^{(1)}(kr) \, e^{jm(\phi - \phi_{\ell})} \text{ for } r_{\ell} < r \end{cases}$$

where $H_m^{(1)}(\cdot)$ is the *m*th cylindrical Hankel function of the first kind.

イロト 不得 とくほと くほう

Nth order Sound sources

*N*th order Sound source can be represented as $H_n^{(1)}(k||\mathbf{r} - \mathbf{r}_{\ell}||)e^{jn\beta_{\ell}}$, where β_{ℓ} is the angle measured from the field point \mathbf{r} to the source point vector \mathbf{r}_{ℓ} .

$$H_n^{(1)}(k||\mathbf{r} - \mathbf{r}_{\ell}||) e^{jn\beta_{\ell}} \text{ can be expressed:}$$

$$= \begin{cases} \sum_{m=-\infty}^{\infty} J_m(kr) H_{m+n}^{(1)}(kr_{\ell}) e^{jm(\phi - \phi_{\ell})} \text{ for } r < r_{\ell} \\ \\ \sum_{m=-\infty}^{\infty} J_{m+n}(kr_{\ell}) H_m^{(1)}(kr) e^{jm(\phi - \phi_{\ell})} \text{ for } r_{\ell} < r \end{cases}$$

< 回 > < 回 > < 回 >

Mark A. Poletti, Thushara D. Abhayapala Spatial Sound Reproduction using Higher Order Loudspeakers

Nth order Sound sources

- A combination of order n = N and n = -N sources has a far-field polar response which is a combination of cos Nφ and sin Nφ terms.
- A loudspeaker which produces a general *N*th order source consists of a sum of source orders *n* ∈ [−*N*, *N*] with weights *w*_{n,ℓ}.
- An array of L general Nth order sources will produce a field

$$p(r,\phi,k) = \sum_{\ell=1}^{L} \sum_{n=-N}^{N} w_{n,\ell} H_n^{(1)}(k||\boldsymbol{r}-\boldsymbol{r}_{\ell}||) e^{jn\beta_{\ell}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Solution via Mode Matching

By equating the desired interior field to the field created by *L* general *N*th order sources, and mode matching:

Interior Mode Matching Equation

$$\sum_{m=-N}^{N} H_{m+n}^{(1)}(kr_{L}) \sum_{\ell=1}^{L} w_{n,\ell} e^{-jm\phi_{\ell}} = A_{m}, \ m \in [-M, M].$$

Assuming zero desired exterior field

Exterior Mode Matching Equation

$$\sum_{n=-N}^{N} J_{m+n}(kr_L) \sum_{\ell=1}^{L} w_{n,\ell} e^{-jm\phi_{\ell}} = 0, \ m \in [-M, M].$$

Solution via Mode Matching

• We can combine *interior* and *exterior* equation together to form a Matrix equation in the form of

Hw = d

where **H** is $(4M + 2) \times (2N + 1)L$ matrix, **w** is a (2N + 1)L vector and **d** is a 2M + 1 vector of desired sound field coefficients.

• This matrix equation can be solved for higher order source weights when $(4M + 2) \le (2N + 1)L$.

・ロト ・回ト ・ヨト ・ヨト

Solution via Mode Matching

- To be able to reproduce the interior field as well as to cancel the exterior field, we need (4M + 2) ≤ (2N + 1)L.
- *M* is the number of modes supported in the interior field and *N* is the order of the each loudspeaker unit and *L* is the number of loudspeakers.
- Also $M \approx kr_M$ where r_M is the maximum reproduction radius.

・ 同 ト ・ ヨ ト ・ ヨ ト

Matlab Simulation

- Circular array containing *L* = 15 higher order loudspeakers.
- Array radius $r_L = 3$ m.
- Corresponds to Nyquist frequency of 126 Hz.
- Desired field is due to a line source located at a radius 6 m and an angle 36° degrees- half way between adjacent loudspeakers.

・聞き くほき くほう

First order: Performance just below Nyquist

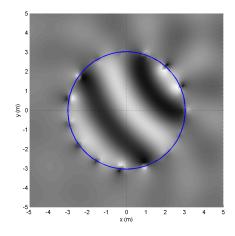


Figure: Sound field for N=1 loudspeakers at frequency 125 Hz

First order: Performance above Nyquist

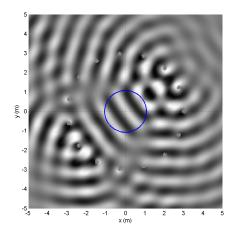
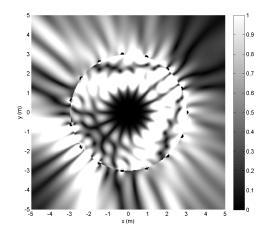


Figure: Sound field for N=1 loudspeakers at frequency 350 Hz

Reproduction Error


The Reproduction error is defined relative to the desired pressure at the origin

$$\epsilon(\mathbf{r},\phi,\mathbf{k}) = \begin{cases} |\hat{p}(\mathbf{r},\phi,\mathbf{k}) - p(\mathbf{r},\phi,\mathbf{k})| / |p(0,0,\mathbf{k})|, \ \mathbf{r} < \mathbf{r}_L, \\ |\hat{p}(\mathbf{r},\phi,\mathbf{k})| / |p(0,0,\mathbf{k})|, \ \mathbf{r} > \mathbf{r}_L. \end{cases}$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣

First order: Reproduction Error

Mark A. Poletti, Thushara D. Abhayapala Spatial Sound Reproduction using Higher Order Loudspeakers

Third order array

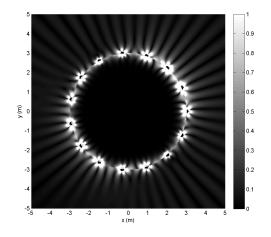


Figure: Sound field for N=3, frequency 350 Hz

Mark A. Poletti, Thushara D. Abhayapala

Spatial Sound Reproduction using Higher Order Loudspeakers

Reproduction error: Third Order

Figuro: Roproduction orror N=3 froquonov 350 Hz

6th Order Array @ 800 Hz

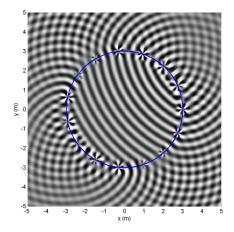


Figure: Sound field for N_6_frequency 800 Hz

Mark A. Poletti, Thushara D. Abhayapala

Spatial Sound Reproduction using Higher Order Loudspeakers

Conclusions

- Considered the use of an array of higher order loudspeakers for sound field reproduction, in the 2D case.
- We have demonstrated by simulation that an Nth order array - capable of radiating polar responses up to and including cos Nφ and sin Nφ - is able to extend the reproduction region, or the frequency range, by a factor N, while significantly reducing the exterior sound field.
- This suggests that sound reproduction can be carried out using 1/Nth of the number of simple loudspeakers, if those loudspeakers are able to produce all responses up to Nth order.

→ Ξ → → Ξ

< 🗇 🕨