/ Rand PPM : A low power \

compressive sampling analog to
digital converter

Praveen Yenduri
Anna Gilbert, Mike Flynn, Shahrzad Naraghi

University of Michigan, Ann Arbor

L vV

MICHIGAN

vE




The PPM (Pulse position modulation) ADC

Aty AT,
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* Features:
e A periodic reference ramp signal for sampling.

e Employs a TDC for time delay digitization.
e Low power : A 9-bit 14uW (2009) Naraghi et al.

 Replacement of significant analog circuitry by digital
components.

e Non-uniform sampling

e Reconstruction through a non-linear iterative technique which
needs a sampling rate of about 1.2 times the Nyquist.
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A Compressed Sensing design

(tllyl)l(tZIyz)"" X11X2)X31-"

Input Signal

l\/\/\/ Sampler

* A Low power Sub-Nyquist Sampler in time domain.
e Fast Reconstruction of the signal in Frequency domain.

Reconstruction

e Condition on Input signal :

e Sparse in the Frequency domain.
S-sparse => S non-zero frequency coefficients

e Compressible in the Frequency domain. - —
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Rand PPM B

------- Const. PPM

 Features:
e Ramp starting time in each period is a random variable.

e Low power TDC with digital components.
e Non-uniform random sampling

e Reconstruction through compressive sampling algorithms.
e Sampling rate is sub-Nyquist.

e Assumes an s-sparse or compressible input signal.
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Measurement Matrix

Let f be the input signal in time domain.
In compressed sensing, form ®f = .
® => Random linear measurements.
fis sparse in some Ortho-Normal Basis W.
f=Wx, x=>sparse. Hence PWx =y. 1000
For random on-grid sampling in time,® =

W = IDFT Matrix. |0000...
Net Measurement matrix B = ®W => sub-IDFT.

For PPM ADC, @ is an interpolation matrix.
Hence, B is not a sub-IDFT matrix.
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Measurement Matrix

Let the input signal f have a maximum frequency f__ <F,/2.

F\ => Nyquist frequency.

K =>Number of measurements acquired by the PPM Sampler.

N => Number of measurements if sampled at Nyquist rate, N > K.

Reconstruction frequencies f_ = F(n/N), n=[-N/2:N/2 -1].
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Measurement Matrix
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Reconstruction

ALGORITHM 1 :
Signal Model :
Any s-sparse (compressible) signal

input

N,sparsityparameterS, (t.,y,),i =12..,K

output X (Signalin frequencydomain,length N)

_ For Least Squares : Richardson iteration with
/' Acceleration
Run time : O(SK log(2/6))

Frequency Identification & => error tolerance in soln.

For BMr : Inverse NUFFT (steidl) with Cardinal

for 1=123... B-spline Interpolation.

Coefficient Run time : O(N log N) + O(K)

estimation and
correction

until ||r;,; |, issmallenough.
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Algorithm 1 : Analysis
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Algorithm 1 : Analysis

* Theorem: y:Bx+£,GivenK:O(32j, withprobabiliyl—O(gz),
£

Runtime= O( IN log N), ||X_),Z”§<|Ix—x(s) |3 LCB)I€IE
| =#iteration: - l1-a 1-a

s=3
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Algorithm 1 : Analysis

e Theorem : y:Bx+£,GivenK:O(32j, withprobabiliyl—O(gz),
£

Ix=x I, c(B) 1€ 1R

X—X|E<
| 3 1n g
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iterationi =1 _
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Algorithm 1 : Analysis

* Theorem: y:Bx+£,GivenK:O(32j, withprobabiliyl—O(gz),
£

X=X IE . c(B)I€]E

X—X|E<
| 3 1n g

B Var(X_ )<

2
E _
?”)_(_51”;

iteration| =2
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Algorithm 1 : Analysis
e Theorem: y:Bx+£,GivenK:O(g—Szj, Withprobabiliyl—O(gz),

Ix=x I, c(B) 1€ 1R

X—X|E<
| 3 1n g

iterationi =1
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Results : Reconstructing Multitone signals
with algorithm 1

Input signal is a combination of J sinusoids with frequencies randomly chosen
from the Nyquist grid. Sparsity S = 2*].

The tones have comparable amplitudes and random phases.
Sampling frequency = 1 MHz, Nyquist Frequency = 3 MHz.

S-term Nyquist benchmark : the input signal is sampled at Nyquist rate at the
same guantization level of the PPM, and then truncated in frequency domain to
retain only the dominant s frequencies
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Percentage sampling (compression)

results for algorithm 1

J =1 tone, placed at 1.49MHz. Nyquist Frequency = 3 MHz.
Percentage sampling = 100*K/N
Success : Output SNR > rect (input SNR ) + 10 dB, rect(a) = 0.5*(a+|a|)

mean SNR in reconstruction
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output signal amplitude (absolute)

Reconstructing an Off-grid Frequency signal with
algorithm 1

Reconstructing a two tone signal with the frequencies chosen randomly and off the
Nyquist. grid.
Off-grid frequency causes spectral spread or leakage => adversely affects sparsity
Reduce spectral leakage through windowing (post sampling , before
reconstruction)
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i —x‘ o/ si‘ nal
et e £ it i N —=< i/ppsiggnal B 6
I o S 20t
e 2
| | | | | | : | ﬁ
| C
0081 - o 157
| L
T et | S S =
L I o 10} -
S I S B BT | S I H IO O S % -8 s-term NYQ w/ Hamming
} c 9 'F -8- rand PPM w/ Hamming ]
X S 1 S ® =@ =rand PPM w/o Hamming
S R 11~ S A £ o
Owwwwmﬂm 1 — 0 | , ,
60 70 80 9 100 110 120 130 140 0 10 20 30 40
frequency from -N/2 to N/2, where N =450 input SNR
Rand PPM : A low power CS ADC

16




FM sighal reconstruction with algorithm 1

FM signal = A cos(2ntf t + B sin(2rtf t); Approximate Analytical BW = 2*(B+1)*f
Both Carrier Frequency and message frequency are randomly chosen to be off
the Nyquist Grid. B =2

Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.

The sparsity parameter input to the reconstruction algorithmis s =36.

The signal is windowed, reconstructed and demodulated before calculating the
output SNR.
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AM signal reconstruction with algorithm 1

AM signal = A (1+ka*m(t)) cos(2mtf t); m(t) => message, ka => to keep
the envelope of the signal positive.

AM signal with random off-grid carrier frequency and sawtooth
message as modulating signal.

Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.
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Results : Reconstructing multi-tone signals

with algorithm 2

Input signal is a combination of J sinusoids with frequencies randomly chosen
from the Nyquist grid. Sparsity S = 2*).

The tones have comparable amplitudes and random phases.

Sampling frequency = 1 MHz, Nyquist Frequency = 3 MHz.

Number of blocks m = 5.
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AM signal reconstruction

AM signal = A (1+ka*m(t)) cos(2nf t); m(t) => message, ka => to keep the envelope of
the signal positive.

AM signal with random off-grid carrier frequency and sawtooth message as modulating
signal.

Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.
Number of blocks m = 5.
The plot below compares the reconstruction of First block.
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Conclusions

e The Rand PPM design exhibits much better performance

than the conventional PPM desigh in more than one way :

better and closer to benchmark performance in terms of the output SNR.
Rand PPM can handle less sparse signals better than Const. PPM.

can handle signals with off-grid frequencies.

enables the reductions of sampling rate to levels much below Nyquist.
enables the use of reconstruction algorithms 1 & 2 that are faster and also
feasible for a hardware implementation.

Algo 1 can be used with Hamming window to boost the performance

when the input SNR levels are high enough.

Algo 2 can be used to improve computational efficiency whenever the input
signal satisfies the required assumptions.
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Thank you !!
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Reconstruction

Basis Pursuit (L, Minimization) :

Min||x|| st. y=Bx Min|[x|} st.|ly—-Bx|L<e
X - or X -
Limitations :

B needs a lot of Rows (O(Klog*N)) to satisfy RIP properties.

Relatively slow reconstruction, relatively difficult for FPGA
implementation.

Greedy Matching Pursuit Algorithms :

Min||x—-z|| subjectto||z|,<s

CoSaMP : B needs to be an RIP matrix with 6,.< 0.1
IT : Assumes that |[B|,<1

Rand PPM ADC measurement matrix B does not need to satisfy any
of the above properties !

=> Matching pursuit with different theoretical analysis.
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Algorithm 1 : Analysis

e Theorem::
Let y=Bx+¢&, wheref =error.Supposgx > a”XHZ 2| o X[
S
where| x |is themagnitudef i"largest temin x. GivenK = O(izj
£

with probabiliy 1- O( £° ) thes- termestimate satisfies,
X=X €, c(B)II<IE

1-a 1-a
X => Bests-termapproximadn tox.

X=X <

Runtime= O(IN log N), | =#iterations
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Reconstruction

ALGORITHM 2 : Signal Model :

s-sparse (compressible) in each block, support set of
top s coefficients constant over m blocks, but the
coefficients can vary.

inﬁut | N,s,K,samplesover mblocks
(t@i), y()),i=212..,m
outpuf] X(i) (lengthN,i =1,..,m)

Inverse NUFFT (steidl) with Cardinal
" B-spline Interpolation.
Run time : O(N log N) + O(K)

T =supp{[X]s}
fori =1,..m

X))y = (B()+ B(i)7) ™ B(i)y

g Richardson iteration with Acceleration
Run time : O(SK log(2/6))
& => error tolerance in soln.
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Algorithm 2 : Analysis

e Theorem : Givenmzo{ln(%ﬂ, with probabiliy 1-9,

the top s frequencis are correctlyidentified
witharuntimeof O(N logN) perblock.

block=1
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Algorithm 2 : Analysis

e Theorem : Givenmzo{ln(%ﬂ, with probabiliy 1-9,

the top s frequencis are correctlyidentified
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Algorithm 2 : Analysis

e Theorem : Givenmzo{ln(%ﬂ, with probabiliy 1-9,

the top s frequencis are correctlyidentified
witharuntimeof O(N logN) perblock.

iteration=1 A A A
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