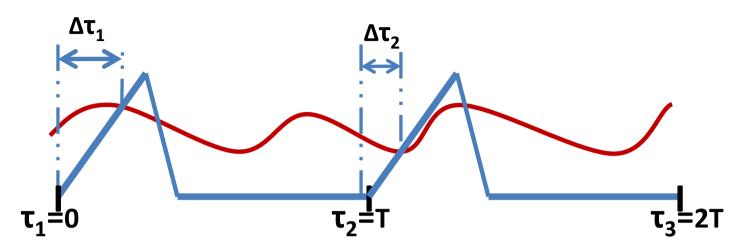
Rand PPM: A low power compressive sampling analog to digital converter

Praveen Yenduri

Anna Gilbert, Mike Flynn, Shahrzad Naraghi

University of Michigan, Ann Arbor

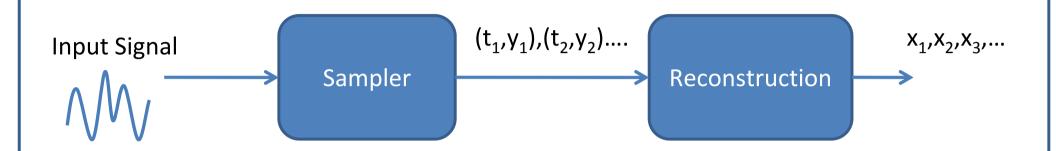
The PPM (Pulse position modulation) ADC



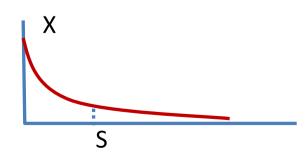
Features:

- A periodic reference ramp signal for sampling.
- Employs a TDC for time delay digitization.
- Low power: A 9-bit 14μW (2009) Naraghi et al.
- Replacement of significant analog circuitry by digital components.
- Non-uniform sampling
- Reconstruction through a non-linear iterative technique which needs a sampling rate of about 1.2 times the Nyquist.

A Compressed Sensing design

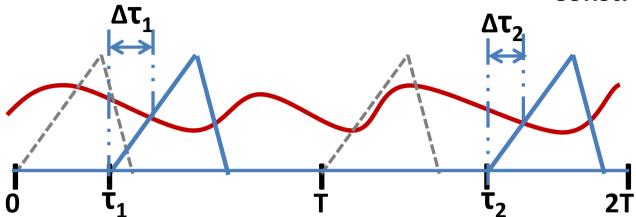


- A Low power Sub-Nyquist Sampler in time domain.
- Fast Reconstruction of the signal in Frequency domain.
- Condition on Input signal:
 - Sparse in the Frequency domain.
 S-sparse => S non-zero frequency coefficients
 - Compressible in the Frequency domain.



Rand PPM

rand PPM
Const. PPM



Features:

- Ramp starting time in each period is a random variable.
- Low power TDC with digital components.
- Non-uniform random sampling
- Reconstruction through compressive sampling algorithms.
- Sampling rate is sub-Nyquist.
- Assumes an s-sparse or compressible input signal.

Measurement Matrix

- Let f be the input signal in time domain.
- In compressed sensing, form $\Phi f = y$.
 - Φ => Random linear measurements.
- f is sparse in some Ortho-Normal Basis Ψ .

```
f = \Psi x, x => sparse. Hence \Phi \Psi x = y.
```

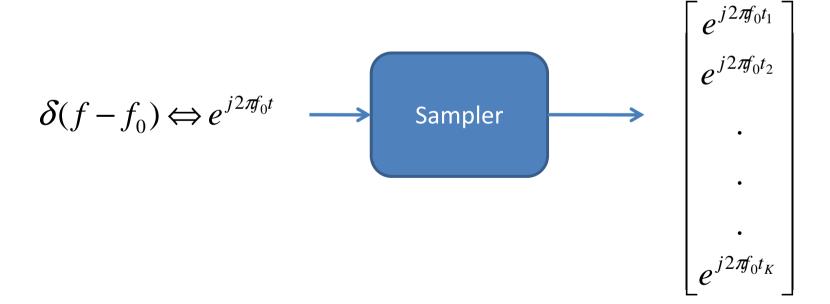
• For random on-grid sampling in time, Φ =

```
1000.....00
0010.....00
:
0000.....10
```

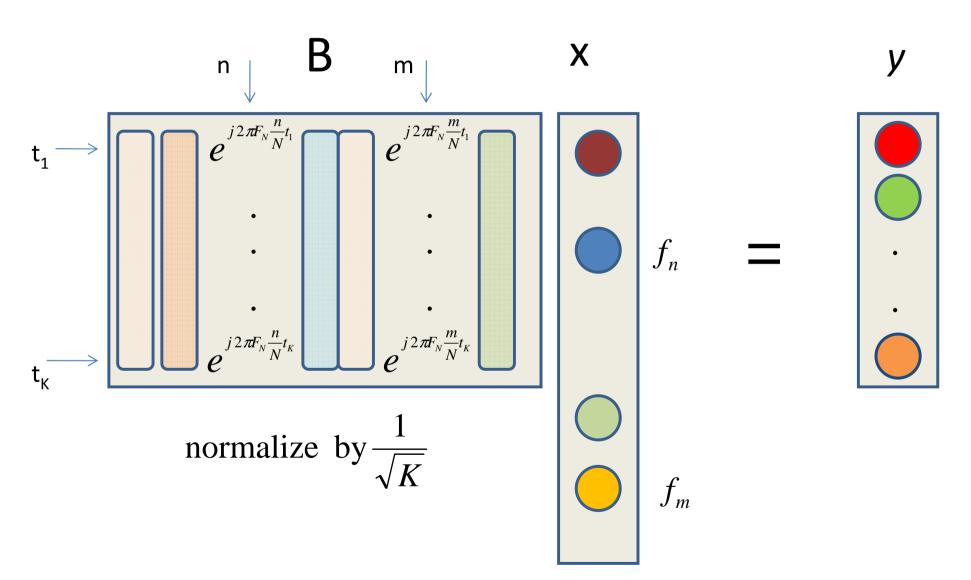
- $\Psi = IDFT$ Matrix.
- Net Measurement matrix $B = \Phi \Psi => \text{sub-IDFT}$.
- For PPM ADC, Φ is an interpolation matrix.
- Hence, B is not a sub-IDFT matrix.

Measurement Matrix

- Let the input signal f have a maximum frequency $f_{max} < F_N/2$.
- $F_N => Nyquist frequency.$
- K => Number of measurements acquired by the PPM Sampler.
- N => Number of measurements if sampled at Nyquist rate, N > K.
- Reconstruction frequencies $f_n = F_N(n/N)$, n = [-N/2 : N/2 1].



Measurement Matrix



Reconstruction

ALGORITHM 1:

Signal Model:

Any s-sparse (compressible) signal

input

N, sparsity parameter $S, (t_i, y_i), i = 1, 2..., K$

 $\underline{\tilde{x}}$ (Signal in frequency domain, length N)

Frequency Identification

For Least Squares : Richardson iteration with

Acceleration

Run time : $O(SK \log(2/\delta))$

 $\delta =$ error tolerance in soln.

for i = 1, 2, 3...

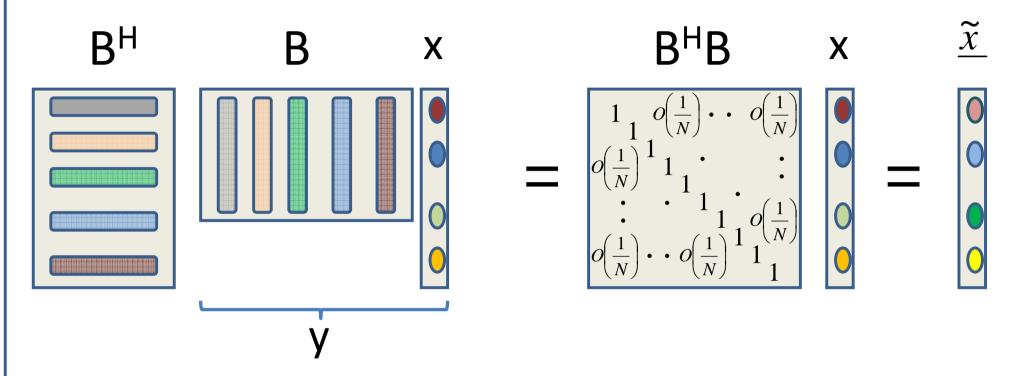
Coefficient estimation and correction

until $\|\underline{r}_{i+1}\|_2$ is small enough.

For $\mathsf{B}^\mathsf{H} \mathsf{r}$: Inverse NUFFT (steidl) with Cardinal

B-spline Interpolation.

Run time: $O(N \log N) + O(K)$



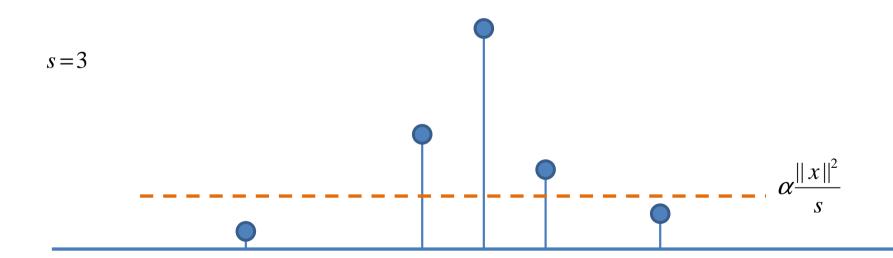
with
$$K = O\left(\frac{s}{\varepsilon^2}\right)$$
,

with
$$K = O\left(\frac{s}{\varepsilon^2}\right)$$
, $E(\widetilde{x}_m) = x_m + O\left(\frac{1}{N}\right) ||\underline{x}||_1$

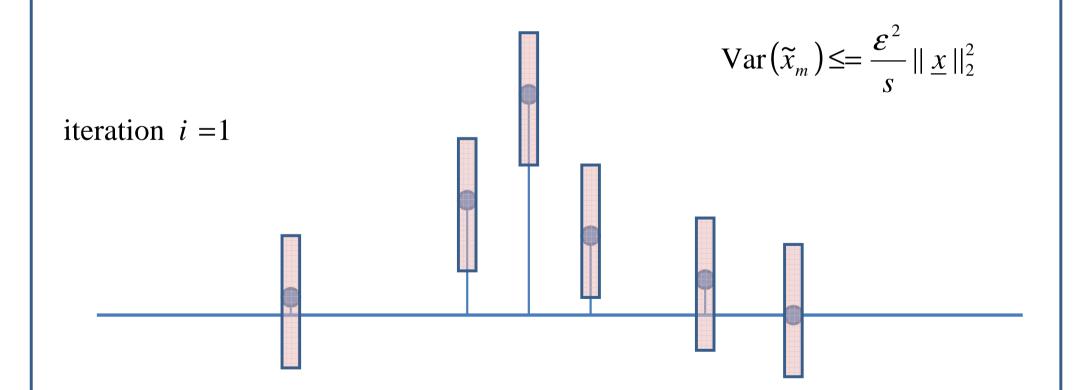
$$\operatorname{Var}(\widetilde{x}_m) \leq \frac{\varepsilon^2}{s} ||\underline{x}||_2^2$$

Runtime=
$$O(IN \log N)$$
, $I = \# iterations$

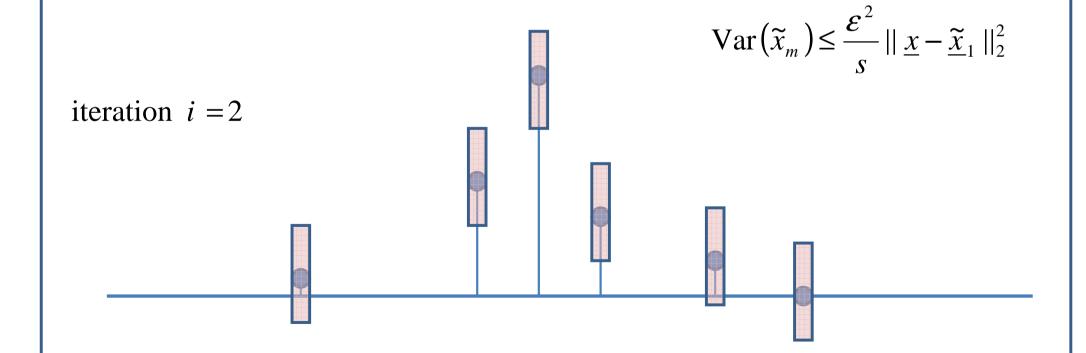
$$||x-\widetilde{x}||_{2}^{2} \le \frac{||x-x_{(s)}||_{2}^{2}}{1-\alpha} + \frac{c(B)||\xi||_{2}^{2}}{1-\alpha}$$



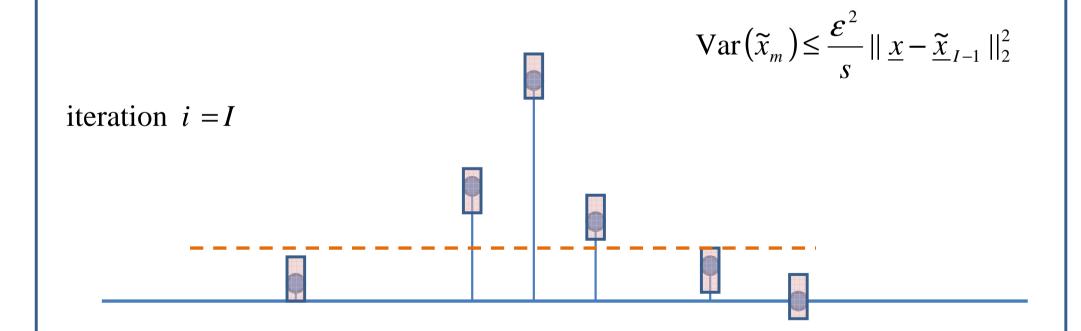
$$||x - \widetilde{x}||_{2}^{2} \le \frac{||x - x_{(s)}||_{2}^{2}}{1 - \alpha} + \frac{c(B) ||\xi||_{2}^{2}}{1 - \alpha}$$



$$||x-\widetilde{x}||_{2}^{2} \le \frac{||x-x_{(s)}||_{2}^{2}}{1-\alpha} + \frac{c(B)||\xi||_{2}^{2}}{1-\alpha}$$

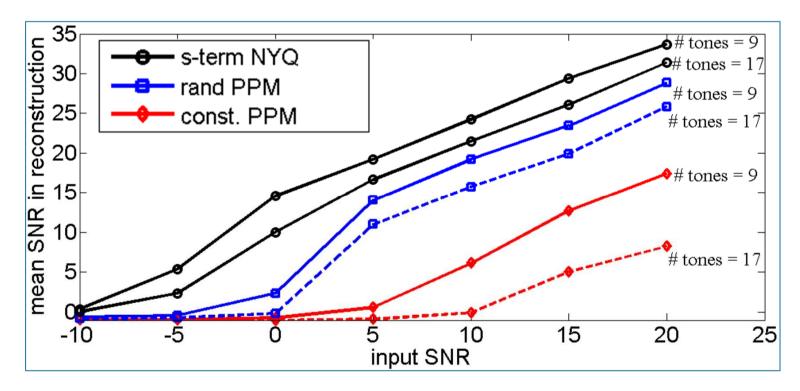


$$||x-\widetilde{x}||_{2}^{2} \le \frac{||x-x_{(s)}||_{2}^{2}}{1-\alpha} + \frac{c(B)||\xi||_{2}^{2}}{1-\alpha}$$



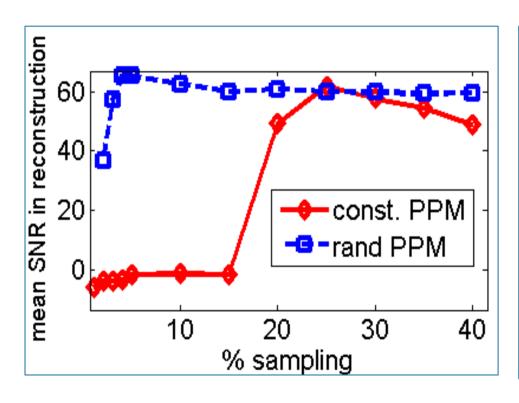
Results: Reconstructing Multitone signals with algorithm 1

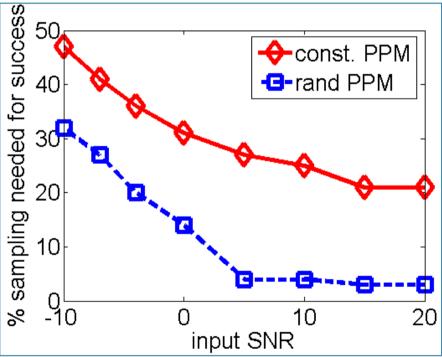
- Input signal is a combination of J sinusoids with frequencies randomly chosen from the Nyquist grid. Sparsity S = 2*J.
- The tones have comparable amplitudes and random phases.
- Sampling frequency = 1 MHz, Nyquist Frequency = 3 MHz.
- S-term Nyquist benchmark: the input signal is sampled at Nyquist rate at the same quantization level of the PPM, and then truncated in frequency domain to retain only the dominant's frequencies



Percentage sampling (compression) results for algorithm 1

- J = 1 tone, placed at 1.49MHz. Nyquist Frequency = 3 MHz.
- Percentage sampling = 100*K/N
- Success: Output SNR > rect (input SNR) + 10 dB, rect(a) = 0.5*(a+|a|)

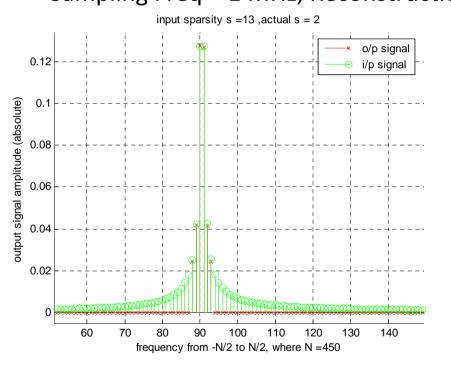


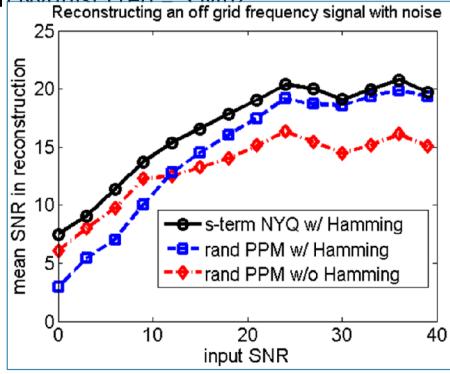


Reconstructing an Off-grid Frequency signal with algorithm 1

- Reconstructing a two tone signal with the frequencies chosen randomly and off the Nyquist. grid.
- Off-grid frequency causes spectral spread or leakage => adversely affects sparsity
- Reduce spectral leakage through windowing (post sampling, before reconstruction)

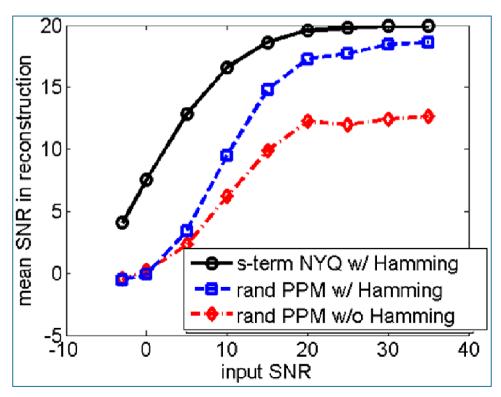
Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz





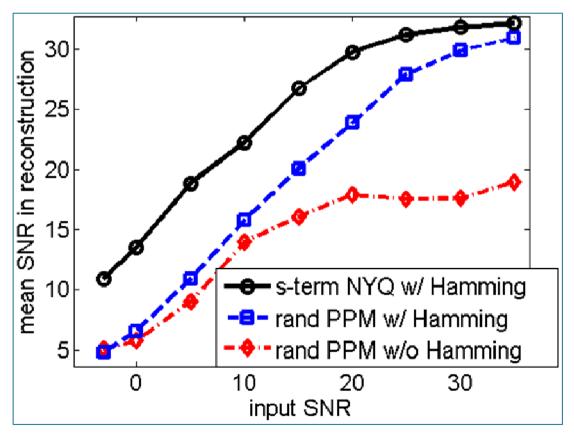
FM signal reconstruction with algorithm 1

- FM signal = A $cos(2\pi f_c t + \beta sin(2\pi f_m t);$ Approximate Analytical BW = 2*(\beta+1)*f_m
- Both Carrier Frequency and message frequency are randomly chosen to be off the Nyquist Grid. β = 2
- Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.
- The sparsity parameter input to the reconstruction algorithm is s = 36.
- The signal is windowed, reconstructed and demodulated before calculating the output SNR.



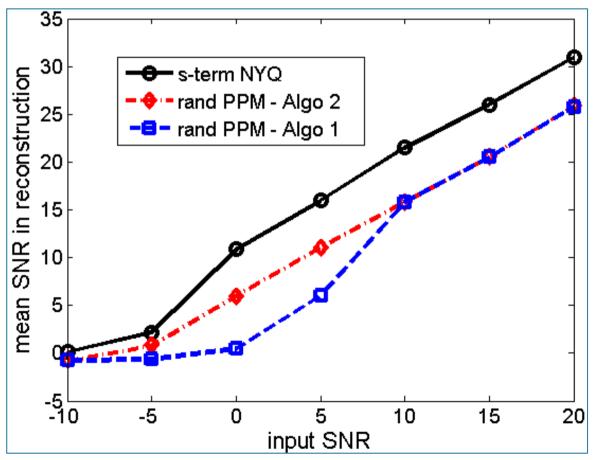
AM signal reconstruction with algorithm 1

- AM signal = A (1+ka*m(t)) $cos(2\pi f_c t)$; m(t) => message, ka => to keep the envelope of the signal positive.
- AM signal with random off-grid carrier frequency and sawtooth message as modulating signal.
- Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.



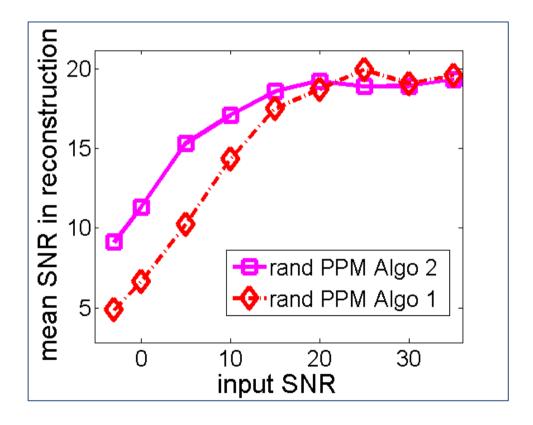
Results: Reconstructing multi-tone signals with algorithm 2

- Input signal is a combination of J sinusoids with frequencies randomly chosen from the Nyquist grid. Sparsity S = 2*J.
- The tones have comparable amplitudes and random phases.
- Sampling frequency = 1 MHz, Nyquist Frequency = 3 MHz.
- Number of blocks m = 5.



AM signal reconstruction

- AM signal = A (1+ka*m(t)) $cos(2\pi f_c t)$; m(t) => message, ka => to keep the envelope of the signal positive.
- AM signal with random off-grid carrier frequency and sawtooth message as modulating signal.
- Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.
- Number of blocks m = 5.
- The plot below compares the reconstruction of First block.



Conclusions

- The Rand PPM design exhibits much better performance than the conventional PPM design in more than one way:
 - better and closer to benchmark performance in terms of the output SNR.
 - Rand PPM can handle less sparse signals better than Const. PPM.
 - can handle signals with off-grid frequencies.
 - enables the reductions of sampling rate to levels much below Nyquist.
 - enables the use of reconstruction algorithms 1 & 2 that are faster and also feasible for a hardware implementation.
 - Algo 1 can be used with Hamming window to boost the performance when the input SNR levels are high enough.
 - Algo 2 can be used to improve computational efficiency whenever the input signal satisfies the required assumptions.

Thank you!!

Reconstruction

Basis Pursuit (L₁ Minimization) :

$$\frac{Min \|\underline{x}\|_{1} \quad s.t. \quad \underline{y} = B\underline{x}}{x} \quad \text{or}$$

 \underline{x}

 $\frac{Min ||\underline{x}||_1}{\underline{x}} ||_1 \quad s.t. \quad ||\underline{y} - B\underline{x}||_2 < \varepsilon$

- Limitations:
- B needs a lot of Rows (O(Klog⁴N)) to satisfy RIP properties.
- Relatively slow reconstruction, relatively difficult for FPGA implementation.
- Greedy Matching Pursuit Algorithms:

$$Min \| \underline{\mathbf{x}} - \underline{\mathbf{z}} \|_1$$
 subject to $\| \mathbf{z} \|_0 \le s$

- CoSaMP : B needs to be an RIP matrix with δ_{2s} < 0.1
- IT : Assumes that $||B||_2 < 1$
- Rand PPM ADC measurement matrix B does not need to satisfy any of the above properties!
 - => Matching pursuit with different theoretical analysis.

• Theorem:

Let
$$y = Bx + \xi$$
, where $\xi = \text{error. Suppose}|_{s} x|^{2} \ge \alpha \frac{||x||^{2}}{s} \ge |_{(s+1)} x|^{2}$

where $|i_t x|$ is the magnitude of i^{th} largest term in x. Given $K = O\left(\frac{s}{\varepsilon^2}\right)$,

with probability $1 - O(\varepsilon^2)$, the s - term estimate \widetilde{x} satisfies,

$$||x-\widetilde{x}||_{2}^{2} \le \frac{||x-x_{(s)}||_{2}^{2}}{1-\alpha} + \frac{c(B)||\xi||_{2}^{2}}{1-\alpha}.$$

 $x_{(s)} => \text{Best } s - \text{term approximation to } x.$

Runtime= $O(IN \log N)$, I = # iterations

Reconstruction

ALGORITHM 2: Signal Model:

s-sparse (compressible) in each block, support set of top s coefficients constant over m blocks, but the coefficients can vary.

 $\underbrace{\text{input}}$ N, s, K, samples over m blocks

$$(\underline{t}(i), \underline{y}(i)), i = 1, 2..., m$$

output $\underline{\tilde{x}}(i)$ (length N, i = 1,..., m)

for
$$j = 1,...N$$

$$\hat{x}_j = \text{median } \{ \underline{B(1)}_j^H \underline{y(1)}, ..., |\underline{B(m)}_j^H \underline{y(m)}| \}$$

$$T = \sup\{ [\hat{\underline{x}}]_S \}$$

for
$$i = 1,...m$$

$$\left[\underline{\widetilde{x}}(i)\right]_T = \left(B(i)_T^H B(i)_T\right)^{-1} B(i)_T^H y(i)$$

Inverse NUFFT (steidl) with Cardinal

B-spline Interpolation.

Run time : $O(N \log N) + O(K)$

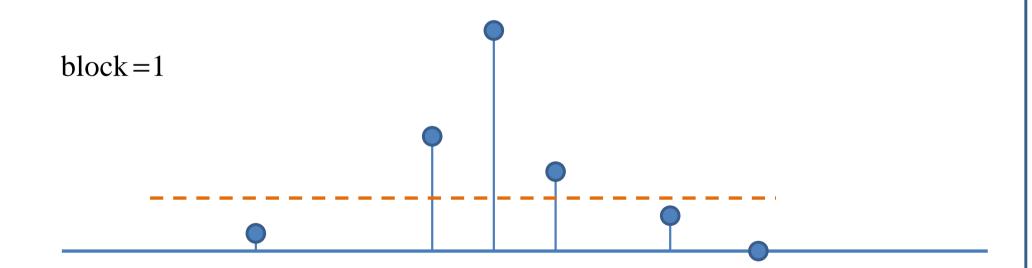
Richardson iteration with Acceleration

Run time : $O(SK \log(2/\delta))$

 $\delta =$ error tolerance in soln.

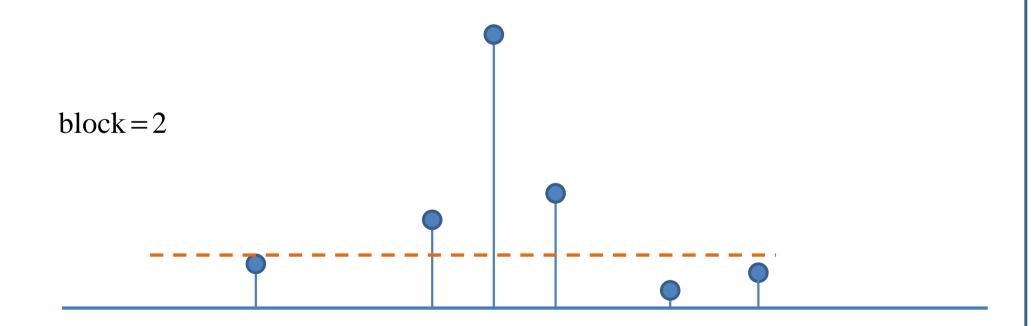
• Theorem: Given $m = O\left[\ln\left(\frac{N}{\delta}\right)\right]$, with probability $1 - \delta$,

the top s frequencies are correctly identified with a runtime of $O(N \log N)$ per block.



• Theorem: Given $m = O\left[\ln\left(\frac{N}{\delta}\right)\right]$, with probability $1 - \delta$,

the top s frequencies are correctly identified with a runtime of $O(N \log N)$ per block.



• Theorem: Given $m = O\left[\ln\left(\frac{N}{\delta}\right)\right]$, with probability $1 - \delta$,

the top s frequencies are correctly identified with a runtime of $O(N \log N)$ per block.

