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The PPM (Pulse position modulation) ADC

• Features:
• A periodic reference ramp signal for sampling.

• Employs a TDC for time delay digitization.

• Low power : A 9-bit 14μW (2009) Naraghi et al.

• Replacement of significant analog circuitry by digital 
components. 

• Non-uniform sampling

• Reconstruction through a non-linear iterative technique which 
needs a sampling rate of about 1.2 times the Nyquist.
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A Compressed Sensing design

Sampler Reconstruction

Input Signal (t1,y1),(t2,y2)…. x1,x2,x3,…

• A Low power Sub-Nyquist Sampler in time domain.

• Fast Reconstruction of the signal in Frequency domain.

• Condition on Input signal :

• Sparse in the Frequency domain. 

S-sparse => S non-zero frequency coefficients

• Compressible in the Frequency domain.
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Rand PPM

• Features:
• Ramp starting time in each period is a random variable.

• Low power TDC with digital components.

• Non-uniform random sampling

• Reconstruction through compressive sampling algorithms. 

• Sampling rate is sub-Nyquist.

• Assumes an s-sparse or compressible input signal.

I III

∆τ
1

T

∆τ
2

0 2T
I

rand PPM

Const. PPM

τ
1

τ
2

Rand PPM : A low power CS ADC 4



Measurement Matrix

• Let f be the input signal in time domain.

• In compressed sensing, form Фf = y.

Ф => Random linear measurements.

• f is sparse in some Ortho-Normal Basis Ψ.

f = Ψх,  x => sparse. Hence ФΨx = y.

• For random on-grid sampling in time,Ф =

• Ψ = IDFT Matrix.

• Net Measurement matrix B = ФΨ => sub-IDFT.

• For PPM ADC, Ф is an interpolation matrix.

• Hence, B is not a sub-IDFT matrix.

1 0 0 0…………....0 0

0 0 1 0….............0 0

0 0 0 0….............1 0
.
.
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Measurement Matrix
• Let the input signal f have a maximum frequency fmax < FN/2.

• FN => Nyquist frequency.

• K => Number of measurements acquired by the PPM Sampler.

• N => Number of measurements if sampled at Nyquist rate, N > K.

• Reconstruction frequencies fn = FN(n/N),  n = [-N/2 : N/2 – 1].

tfjeff 02
0)( πδ ⇔− Sampler



























Ktfj

tfj

tfj

e

e

e

0

20

10

2

2

2

.

.

.

π

π

π

Rand PPM : A low power CS ADC 6



Measurement Matrix
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Reconstruction

enough. small is  ||||  until 21+ir

For Least Squares : Richardson iteration with 

Acceleration

Run time :  O(SK log(2/δ))

δ => error tolerance in soln.

For BHr : Inverse NUFFT (steidl) with Cardinal 

B-spline Interpolation.

Run time :  O(N log N) + O(K)

ALGORITHM 1 :
Signal Model :

Any s-sparse (compressible) signal

Rand PPM : A low power CS ADC 8

Frequency Identification

Coefficient 

estimation and 

correction



Algorithm 1 : Analysis

.
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Algorithm 1 : Analysis

• Theorem :
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Algorithm 1 : Analysis

• Theorem :
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Algorithm 1 : Analysis

• Theorem :
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Algorithm 1 : Analysis

• Theorem :
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Results : Reconstructing Multitone signals 

with algorithm 1
• Input signal is a combination of J sinusoids with frequencies randomly chosen 

from the Nyquist grid.  Sparsity S = 2*J.  

• The tones have comparable amplitudes and random phases.

• Sampling frequency = 1 MHz, Nyquist Frequency = 3 MHz.

• S-term Nyquist benchmark : the input signal is sampled at Nyquist rate at the 
same quantization level of the PPM, and then truncated in frequency domain to 
retain only the dominant s frequencies
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Percentage sampling (compression) 

results for algorithm 1

• J = 1 tone, placed at 1.49MHz. Nyquist Frequency = 3 MHz.

• Percentage sampling  = 100*K/N

• Success : Output SNR > rect (input SNR ) + 10 dB, rect(a) = 0.5*(a+|a|) 
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Reconstructing an Off-grid Frequency signal with 

algorithm 1
• Reconstructing a two tone signal with the frequencies chosen randomly and off the 

Nyquist. grid.

• Off-grid frequency causes spectral spread or leakage => adversely affects sparsity

• Reduce spectral leakage through windowing (post sampling , before 
reconstruction)

• Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.
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FM signal reconstruction with algorithm 1

• FM signal = A cos(2πfct + β sin(2πfmt);  Approximate Analytical BW = 2*(β+1)*fm

• Both Carrier Frequency and message frequency are randomly chosen to be off 
the Nyquist Grid.  β = 2

• Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.

• The sparsity parameter input to the reconstruction algorithm is s = 36 .

• The signal is windowed, reconstructed and demodulated before calculating the 
output SNR.
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• AM signal = A (1+ka*m(t)) cos(2πfct);  m(t) => message, ka => to keep 
the envelope of the signal positive.

• AM signal with random off-grid carrier frequency and sawtooth 
message as modulating signal.  

• Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.

AM signal reconstruction with algorithm 1
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Results : Reconstructing multi-tone signals 

with algorithm 2
• Input signal is a combination of J sinusoids with frequencies randomly chosen 

from the Nyquist grid.  Sparsity S = 2*J.  

• The tones have comparable amplitudes and random phases.

• Sampling frequency = 1 MHz, Nyquist Frequency = 3 MHz.

• Number of blocks m = 5.
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• AM signal = A (1+ka*m(t)) cos(2πfct);  m(t) => message, ka => to keep the envelope of 
the signal positive.

• AM signal with random off-grid carrier frequency and sawtooth message as modulating 
signal.  

• Sampling Freq = 1 MHz, Reconstruction Nyquist Freq = 3 Mhz.

• Number of blocks m = 5.

• The plot below compares the reconstruction of First block.

AM signal reconstruction
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• The Rand PPM design exhibits much better performance 
than the conventional PPM design in more than one way :

Conclusions

• better and closer to benchmark performance in terms of the output SNR.

• Rand PPM can handle less sparse signals better than Const. PPM.

• can handle signals with off-grid frequencies.

• enables the reductions of sampling rate to levels much below Nyquist.

• enables the use of reconstruction algorithms 1 & 2 that are faster and also 

feasible for a hardware implementation.

• Algo 1 can be used with Hamming window to boost the performance 

when the input SNR levels are high enough.

• Algo 2 can be used to improve computational efficiency whenever the input 

signal satisfies the required assumptions.
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Thank you !!
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Reconstruction
• Basis Pursuit (L1 Minimization) :

• Limitations :

• B needs a lot of Rows (O(Klog4N)) to satisfy RIP properties.

• Relatively slow reconstruction, relatively difficult for FPGA 
implementation.
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• Greedy Matching Pursuit Algorithms :

• CoSaMP : B needs to be an RIP matrix with δ2s< 0.1

• IT : Assumes that 

• Rand PPM ADC measurement matrix B does not need to satisfy any 
of the above properties ! 

=> Matching pursuit with different theoretical analysis.
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Algorithm 1 : Analysis

• Theorem :
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Reconstruction

Richardson iteration with Acceleration

Run time :  O(SK log(2/δ))

δ => error tolerance in soln.

Inverse NUFFT (steidl) with Cardinal 

B-spline Interpolation.

Run time :  O(N log N) + O(K)

ALGORITHM 2 :  Signal Model :

s-sparse (compressible) in each block, support set of 

top s coefficients constant over m blocks, but the 

coefficients can vary.
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Algorithm 2 : Analysis

• Theorem :
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Algorithm 2 : Analysis

• Theorem :
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Algorithm 2 : Analysis

• Theorem :
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