Low-Rank Matrix Completion Geometric Approach and Performance Guarantees

Wei Dai, Ely Kerman, and Olgica Milenkovic

Imperial College London (IC)
University of Illinois at Urbana-Champaign (UIUC)

ICASSP 2011

Outline

Low-rank matrix completion (LRMC)

Introduction

What is missing for LRMC?

Problem

The natural approach does not work.

Solution

A new "norm"!

Results

Strong performance guarantees for two scenarios.

Compressive Sensing

- ℓ_0 -search.
- \bullet ℓ_1 -minimization.

$$\min_{oldsymbol{x}} \ \|oldsymbol{x}\|_1 \ ext{ s.t. } oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x}.$$

- Greedy algorithms.
 - OMP, Subspace pursuit (SP), IHT · · ·

LRMC

• Rank $r \ll \min(m, n)$

LRMC

• Rank $r \ll \min(m, n)$

LRMC

Given

- $\Omega \subset [m] \times [n]$: the index set of the observed entries
- X_{Ω} : partial observations

$$\boldsymbol{X}_{\Omega} = \begin{bmatrix} 1 & 5 & ? & 9 & ? & \cdots \\ ? & 6 & ? & 2 & 7 & \cdots \\ 2 & ? & 4 & ? & 7 & \cdots \\ ? & 3 & ? & 8 & 1 & \cdots \\ 4 & 10 & ? & ? & 5 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Find an $\hat{\boldsymbol{X}}$ so that rank $\left(\hat{\boldsymbol{X}}\right) \leq r$ and $\left(\hat{\boldsymbol{X}}\right)_{\Omega} = \boldsymbol{X}_{\Omega}$.

Methods to Solve LRMC

ullet ℓ_1 -minimization

$$\min_{\boldsymbol{X}'} \ \|\boldsymbol{X}'\|_* \ \text{s.t.} \ (\boldsymbol{X}')_{\Omega} = \boldsymbol{X}_{\Omega}.$$

- Greedy algorithms
 - SP⇒ADMiRA.
 - ► IHT⇒SVP.
- How to do ℓ_0 -search?

Methods to Solve LRMC

ullet ℓ_1 -minimization

$$\min_{\boldsymbol{X}'} \ \|\boldsymbol{X}'\|_* \ \text{s.t.} \ (\boldsymbol{X}')_{\Omega} = \boldsymbol{X}_{\Omega}.$$

- Greedy algorithms
 - SP⇒ADMiRA.
 - ► IHT⇒SVP.
- How to do ℓ_0 -search?

Definition: $\mathcal{U}_{m,r} = \{ \boldsymbol{U} \in \mathbb{R}^{m \times r} : \boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I} \}$ $\boldsymbol{U} \in \mathcal{U}_{m,r} \Rightarrow \text{an } r\text{-d subspace}.$

- This talk: now to find U^* . Will not talk about the uniqueness.
- Why ℓ_0 ? Optimization on a smooth manifold

Definition:
$$\mathcal{U}_{m,r} = \{ \boldsymbol{U} \in \mathbb{R}^{m \times r} : \boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I} \}$$

 $\boldsymbol{U} \in \mathcal{U}_{m,r} \Rightarrow \text{an } r\text{-d subspace}.$

ℓ_0 -Search

$$\begin{split} \forall \boldsymbol{U} \in \mathcal{U}_{m,r}, & \text{ define } f_F\left(\boldsymbol{U}\right) = \min_{\boldsymbol{W} \in \mathbb{R}^{r \times n}} \ \left\|\boldsymbol{X}_{\Omega} - (\boldsymbol{U}\boldsymbol{W})_{\Omega}\right\|_F^2. \\ & \text{LRMC} \equiv \text{find } \underset{\mathbf{a}}{\mathbf{a}} \ \boldsymbol{U}^* \in \mathcal{U}_{m,r} \text{ s.t. } f_F\left(\boldsymbol{U}^*\right) = 0. \end{split}$$
 Then $\hat{\boldsymbol{X}} = \boldsymbol{U}^* \boldsymbol{W}_{\boldsymbol{U}^*}.$

- This talk: how to find U^* . Will not talk about the uniqueness.
- Why ℓ_0 ? Optimization on a smooth manifold.

Definition:
$$\mathcal{U}_{m,r} = \{ \boldsymbol{U} \in \mathbb{R}^{m \times r} : \boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I} \}$$

 $\boldsymbol{U} \in \mathcal{U}_{m,r} \Rightarrow \text{an } r\text{-d subspace}.$

ℓ_0 -Search

$$\forall \boldsymbol{U} \in \mathcal{U}_{m,r}, \text{ define } f_F\left(\boldsymbol{U}\right) = \min_{\boldsymbol{W} \in \mathbb{R}^{r \times n}} \ \left\|\boldsymbol{X}_{\Omega} - (\boldsymbol{U}\boldsymbol{W})_{\Omega}\right\|_F^2.$$
 LRMC \equiv find a $\boldsymbol{U}^* \in \mathcal{U}_{m,r}$ s.t. $f_F\left(\boldsymbol{U}^*\right) = 0$. Then $\hat{\boldsymbol{X}} = \boldsymbol{U}^*\boldsymbol{W}_{\boldsymbol{U}^*}.$

- This talk: how to find U^* . Will not talk about the uniqueness.
- Why ℓ₀? Optimization on a smooth manifold.

Definition:
$$\mathcal{U}_{m,r} = \{ \boldsymbol{U} \in \mathbb{R}^{m \times r} : \boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I} \}$$

 $\boldsymbol{U} \in \mathcal{U}_{m,r} \Rightarrow \text{an } r\text{-d subspace}.$

ℓ_0 -Search

$$\forall \boldsymbol{U} \in \mathcal{U}_{m,r}, \text{ define } f_F\left(\boldsymbol{U}\right) = \min_{\boldsymbol{W} \in \mathbb{R}^{r \times n}} \ \left\|\boldsymbol{X}_{\Omega} - (\boldsymbol{U}\boldsymbol{W})_{\Omega}\right\|_F^2.$$
 LRMC \equiv find a $\boldsymbol{U}^* \in \mathcal{U}_{m,r}$ s.t. $f_F\left(\boldsymbol{U}^*\right) = 0$. Then $\hat{\boldsymbol{X}} = \boldsymbol{U}^*\boldsymbol{W}_{\boldsymbol{U}^*}.$

- This talk: how to find U^* . Will not talk about the uniqueness.
- Why ℓ_0 ? Optimization on a smooth manifold.

A "modified" ℓ_0 -search

W. Dai, O. Milenkovic, and E. Kerman, "Subspace evolution and transfer (SET) for low-rank matrix completion," IEEE Trans. Signal Processing, accepted, 2011.

The natural approach doesn't work

$$f_{F}\left(\boldsymbol{U}\right) = \min_{\boldsymbol{W} \in \mathbb{R}^{r \times n}} \left\| \boldsymbol{X}_{\Omega} - \left(\boldsymbol{U}\boldsymbol{W}\right)_{\Omega} \right\|_{F}^{2} = \sum_{i=1}^{n} \underbrace{\min_{\boldsymbol{w} \in \mathbb{R}} \left\| \left(\boldsymbol{X}_{\Omega}\right)_{:,i} - \left(\boldsymbol{U}\boldsymbol{w}\right)_{\Omega_{i}} \right\|_{F}^{2}}_{f_{F,i}\left(\boldsymbol{U}\right)}$$

$$\mathbf{X}_{\Omega} = \begin{bmatrix} ? \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{U}(t) = \begin{bmatrix} \sqrt{1 - 2t^2} \\ t \\ t \end{bmatrix}.$$

$$f_F(\mathbf{U}(t)) = \min_{w \in \mathbb{R}} \left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \left(\begin{bmatrix} t \\ t \end{bmatrix} w \right) \right\|_F^2$$

$$= \begin{cases} 0 & \text{if } t \neq 0, \\ 2 & \text{if } t = 0. \end{cases}$$

The natural approach doesn't work

$$f_{F}\left(\boldsymbol{U}\right) = \min_{\boldsymbol{W} \in \mathbb{R}^{r \times n}} \left\| \boldsymbol{X}_{\Omega} - \left(\boldsymbol{U}\boldsymbol{W}\right)_{\Omega} \right\|_{F}^{2} = \sum_{i=1}^{n} \underbrace{\min_{\boldsymbol{w} \in \mathbb{R}} \left\| \left(\boldsymbol{X}_{\Omega}\right)_{:,i} - \left(\boldsymbol{U}\boldsymbol{w}\right)_{\Omega_{i}} \right\|_{F}^{2}}_{f_{F,i}\left(\boldsymbol{U}\right)}$$

$$\mathbf{X}_{\Omega} = \begin{bmatrix} ? \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{U}(t) = \begin{bmatrix} \sqrt{1 - 2t^2} \\ t \\ t \end{bmatrix}.$$

$$f_F(\mathbf{U}(t)) = \min_{w \in \mathbb{R}} \left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \left(\begin{bmatrix} t \\ t \end{bmatrix} w \right) \right\|_F^2$$

$$= \begin{cases} 0 & \text{if } t \neq 0, \\ 2 & \text{if } t = 0. \end{cases}$$

 $f_F(\boldsymbol{U})$ is not continuous.

Replace $f_{F,i}(\boldsymbol{U})$ with $f_{G,i}(\boldsymbol{U})$:

Replace $f_{F,i}(U)$ with $f_{G,i}(U)$:

$$\bullet \left[\begin{array}{c} ? \\ 1 \\ 1 \end{array}\right] \quad \Rightarrow \quad \mathcal{B} = \operatorname{span}\left(\left\{\left[\begin{array}{c} x_1 \\ 1 \\ 1 \end{array}\right]: \ x_1 \in \mathbb{R}\right\}\right).$$

Replace $f_{F,i}(\boldsymbol{U})$ with $f_{G,i}(\boldsymbol{U})$:

$$\bullet \left[\begin{array}{c} ? \\ 1 \\ 1 \end{array}\right] \quad \Rightarrow \quad \mathcal{B} = \operatorname{span}\left(\left\{\left[\begin{array}{c} x_1 \\ 1 \\ 1 \end{array}\right]: \ x_1 \in \mathbb{R}\right\}\right).$$

• Let θ_{\min} be the minimum principal angle between $\mathcal B$ and span (U).

$$\theta_{\min} = 0 \quad \Leftrightarrow \quad \operatorname{span}(U) \bigcap \mathcal{B} \neq \{\mathbf{0}\}.$$

Replace $f_{F,i}(\boldsymbol{U})$ with $f_{G,i}(\boldsymbol{U})$:

$$\bullet \left[\begin{array}{c} ? \\ 1 \\ 1 \end{array}\right] \quad \Rightarrow \quad \mathcal{B} = \operatorname{span}\left(\left\{\left[\begin{array}{c} x_1 \\ 1 \\ 1 \end{array}\right]: \ x_1 \in \mathbb{R}\right\}\right).$$

• Let θ_{\min} be the minimum principal angle between $\mathcal B$ and span (U).

$$\theta_{\min} = 0 \quad \Leftrightarrow \quad \operatorname{span}\left(oldsymbol{U}
ight) igcap \mathcal{B}
eq \{ oldsymbol{0} \}.$$

•
$$f_{G,i}(\mathbf{U}) = \sin^2 \theta_{\min,i}$$
.
 $f_G(\mathbf{U}) = \sum_i f_{G,i}(\mathbf{U})$.

Replace $f_{F,i}(\boldsymbol{U})$ with $f_{G,i}(\boldsymbol{U})$:

$$\bullet \left[\begin{array}{c} ? \\ 1 \\ 1 \end{array} \right] \quad \Rightarrow \quad \mathcal{B} = \operatorname{span} \left(\left\{ \left[\begin{array}{c} x_1 \\ 1 \\ 1 \end{array} \right] : \ x_1 \in \mathbb{R} \right\} \right).$$

ullet Let $heta_{\min}$ be the minimum principal angle between ${\mathcal B}$ and span (U).

$$\theta_{\min} = 0 \quad \Leftrightarrow \quad \operatorname{span}\left(\boldsymbol{U}\right) \bigcap \mathcal{B} \neq \{\boldsymbol{0}\}.$$

•
$$f_{G,i}(\mathbf{U}) = \sin^2 \theta_{\min,i}$$
.
 $f_G(\mathbf{U}) = \sum_i f_{G,i}(\mathbf{U})$.

ℓ_0 -search:

Find
$$U \in \mathcal{U}_{m,r}$$
 s.t. $f_G(U) = 0$.

Continuity!

Continuous

Continuity!

Continuous

• Theorem:

$$\{\boldsymbol{U}\in\mathcal{U}_{m,r}:\ f_G\left(\boldsymbol{U}\right)=0\}=\overline{\{\boldsymbol{U}\in\mathcal{U}_{m,r}:\ f_F\left(\boldsymbol{U}\right)=0\}}.$$

Strong Performance Guarantees

Theorem

For the cases:

- rank-one matrices with arbitrary sampling pattern
- full-sampling matrices with arbitrary ranks

A gradient-descent finds a consistent solution with prob. one.

Dai, Kerman, and Milenkovic, "A Geometric Approach to Low-Rank Matrix Completion," IT, submitted.

Strong Performance Guarantees

Theorem

For the cases:

- rank-one matrices with arbitrary sampling pattern
- full-sampling matrices with arbitrary ranks

A gradient-descent finds a consistent solution with prob. one.

No local minimum / saddle points.

Dai, Kerman, and Milenkovic, "A Geometric Approach to Low-Rank Matrix Completion," IT, submitted.

Strong Performance Guarantees

Theorem

For the cases:

- rank-one matrices with arbitrary sampling pattern
- full-sampling matrices with arbitrary ranks

A gradient-descent finds a consistent solution with prob. one.

- No local minimum / saddle points.
- Do not require incoherence conditions.
- Holds for arbitrary matrix size.

Dai, Kerman, and Milenkovic, "A Geometric Approach to Low-Rank Matrix Completion," IT, submitted.

- ① Let U^* be a global minimizer: $f_G = 0$. $U^* \in \bigcap_i \{U : f_{G,i}(U) = 0\}$.
- ② For a random U_0 , compute $-\nabla f_{G,i}$.
- $exttt{ } exttt{ } ext$

- Let U^* be a global minimizer: $f_G = 0$.
- $U^* \in \bigcap_i \{ U : f_{G,i}(U) = 0 \}.$
- ② For a random U_0 , compute $-\nabla f_{G,i}$.
- $\forall i, \operatorname{\mathsf{Proj}}\left(abla f_{G,i}, U^* U_0
 ight) \geq 0, ext{ where "=" iff } f_{G,i}\left(U_0
 ight) = 0.$
- ① $\nabla f_G = \sum_i \nabla f_{G,i} \Rightarrow$ Proj $(-\nabla f_G, \mathbf{U}^* - \mathbf{U}_0) \ge 0$, where "=" iff $f_G(\mathbf{U}_0) = 0$.

- Let U^* be a global minimizer: $f_G = 0$. $U^* \in \bigcap_i \{ U : f_{G,i}(U) = 0 \}$.
- ② For a random U_0 , compute $-\nabla f_{G,i}$.
- ③ $\forall i, \operatorname{\mathsf{Proj}}\left(abla f_{G,i}, oldsymbol{U}^* oldsymbol{U}_0
 ight) \geq 0,$ where "=" iff $f_{G,i}\left(oldsymbol{U}_0
 ight) = 0.$
- ① $\nabla f_G = \sum_i \nabla f_{G,i} \Rightarrow$ Proj $(-\nabla f_G, \boldsymbol{U}^* - \boldsymbol{U}_0) \ge 0$, where "=" iff $f_G(\boldsymbol{U}_0) = 0$.

- Let U^* be a global minimizer: $f_G = 0$. $U^* \in \bigcap_i \{U : f_{G,i}(U) = 0\}$.
- ② For a random U_0 , compute $-\nabla f_{G,i}$.
- $\forall i, \operatorname{Proj}\left(-\nabla f_{G,i}, \boldsymbol{U}^* \boldsymbol{U}_0\right) \geq 0, \text{ where "=" iff } f_{G,i}\left(\boldsymbol{U}_0\right) = 0.$
- ① $\nabla f_G = \sum_i \nabla f_{G,i} \Rightarrow$ Proj $(-\nabla f_G, \boldsymbol{U}^* - \boldsymbol{U}_0) \ge 0$, where "=" iff $f_G(\boldsymbol{U}_0) = 0$.

- Let U^* be a global minimizer: $f_G = 0$. $U^* \in \bigcap_i \{U : f_{G,i}(U) = 0\}$.
- ② For a random U_0 , compute $-\nabla f_{G,i}$.
- $\forall i, \operatorname{Proj}\left(-\nabla f_{G,i}, \boldsymbol{U}^* \boldsymbol{U}_0\right) \geq 0, \text{ where "=" iff } f_{G,i}\left(\boldsymbol{U}_0\right) = 0.$
- $\nabla f_G = \sum_i \nabla f_{G,i} \Rightarrow$ Proj $(-\nabla f_G, \boldsymbol{U}^* \boldsymbol{U}_0) \geq 0$, where "=" iff $f_G(\boldsymbol{U}_0) = 0$.

Summary

- ℓ_0 -search for LRMC.
- Geometric objective function.
- Strong performance guarantees for two cases.
 - ▶ Do not require incoherence.
 - Holds with probility one.
 - Valid for arbitrary matrix size.
- Future work
 - Analysis for the general case.