COMPRESSED SENSING SIGNAL RECOVERY VIA

A* ORTHOGONAL MATCHING PURSUIT

Nazım Burak KARAHANOĞLU

Hakan ERDOĞAN

TUBITAK - BILGEM

Sabancı University

Overview

- Introduction & Motivation
 - Compressed Sensing (CS) Problem
 - Matching Pursuits
 - Single vs. Multi-Path Search
- > A*OMP: Best-first Search for Compressed Sensing
 - > The Algorithm
 - Path Selection and Extension Mechanisms
 - Reconstruction Performance (1D & 2D)
- Conclusions

Compressed Sensing (CS) Problem

CS question: Acquire a sparse signal X of length N via M < N (random) observations

- ➤ Define: $\mathbf{x} : K$ -sparse vector of length N >> K
 - \mathbf{y} : observed vector of length \mathbf{M} \vdash s. t. $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$
 - Φ : observation matrix of size $M \times N$

s. t.
$$\mathbf{y} = \mathbf{\Phi} \mathbf{x}$$

CS reconstruction problem:

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} \|\mathbf{x}\|_{0} \quad \text{s.t. } \mathbf{\Phi}\mathbf{x} = \mathbf{y}$$

Broad categorisation of reconstruction approaches

- ➤ Greedy Pursuits
- \triangleright Convex Optimization (l_1 minimization)
- \triangleright Nonconvex Minimization (l_p minimization, 0)
- Bayesian Methods

Matching Pursuits

Matching pursuits: iteratively build up / refine a sparse solution.

- ➤ Matching Pursuit,
- ➤ Orthogonal Matching Pursuit,
- ➤ Compressive Sampling Matching Pursuit and Subspace Pursuit (SP),
- > Regularised OMP, etc.

Orthogonal Matching Pursuit (OMP)

- ➤ Identify a non-zero coefficient per iteration:
 - Select dictionary atom having max. inner-product with the residue.
 - Compute orthogonal projection of the residue over the set of selected atoms

Single vs. Multi-Path

Single path strategies fall into errors especially when *K* increases.

Multi path strategy:

- ➤ Consider more than one alternative at each expansion
- Search among a number of dynamically evolving candidates.
- Follow the most promising one, provided an appropriate path selection algorithm.

A* Orthogonal Matching Pursuit (A*OMP)

Combine A* search and OMP

A*OMP: Best-first Search for CS

CS Problem:
$$\underset{\mathbf{x}}{\arg\min} \|\mathbf{x}\|_{0} \text{ s.t. } \Phi\mathbf{x} = \mathbf{y}$$

- Nodes: dictionary elements
- \triangleright i'th path: candidate solution $\hat{\mathbf{x}}_i$
- > Each path has a residue.
- > Each path is assigned a cost.

A*: build up and dynamically evaluate the search tree.

At each iteration,

- choose best path
- expand the best path

A* OMP – The Algorithm

A*OMP:

Initialize the tree: I initial nodes

Select the best path (with minimum cost)

Iterate

Expand best path by its best *B* children (having max. inner-product with residue)

- Update residues (orthogonal proj.)
- Update cost of paths

Select the best path

Terminate when best path has length *K*

A* OMP – Algorithmic Stages

Three important stages should be defined:

- i. Initialization: choose I nodes with max. inner-product to y
- ii. Selection of the best path: how to compare paths with different lengths?
- iii. Expansion of the best path: how to avoid too many paths in the tree?

A* OMP – Best Path Selection

Cost model should compare paths with different lengths:

- ➤ Auxiliary function mechanism of A*
- \triangleright Based on $\|\mathbf{r}_i\|_2$
- Should reflect how much decrease if the path were complete.
- Define cost models that generally (and loosely) hold.

A* OMP - Cost Models

Additive cost model:

$$F_{add}(s_i^l) = \|\mathbf{r}_i^l\|_2 - \beta \frac{K - l}{K} \|\mathbf{y}\|_2$$

Adaptive cost model:

$$F_{adap}(s_i^l) = \|\mathbf{r}_i^l\|_2 - \beta(K - l)(\|\mathbf{r}_i^{l-1}\|_2 - \|\mathbf{r}_i^l\|_2)$$

$$\begin{array}{c|c} \hline 3 & \rightarrow & \hline \\ \|\mathbf{r}_{1}^{1}\|_{2} & \|\mathbf{r}_{1}^{2}\|_{2} & \|\mathbf{r}_{1}^{2}\|_{2} - \beta(\|\mathbf{r}_{1}^{1}\|_{2} - \|\mathbf{r}_{1}^{2}\|_{2}) \\ \end{array}$$

Multiplicative cost model:

$$\left\| F_{mul}(s_i^l) = \boldsymbol{\alpha}^{K-l} \left\| \mathbf{r}_i^l \right\|_2$$

A* OMP – Expansion of the selected path

A* expands all children of the selected branch \rightarrow too many paths ($\sim N^K$).

i.Extensions per path pruning:

Exploit *K*<<*N* (Many of the children are irrelevant.)

→ Expand only the best *B* children

ii.Stack Size pruning:

- → Limit max. stored paths to *P*.
- → If number of paths exceeds *P* remove worst paths.

iii. Equivalent Path Pruning:

Permutations of nodes within a path are equivalent.

→ Add a path to the tree iff no equivalent path already

A* OMP – A Single Iteration

- > /= 1
- P=4
- \rightarrow B=3
- i. Best path: 4

Best extensions: 2,8 and

9

- ii. Add node 2
- iii. Add node 8, remove the worst path (2).
- iv. Ignore node 9

A*OMP Performance – 1D

Problem: CS reconstruction of synthetical 1D signals

- Nonzero coefs. drawn from standart normal distribution
- > N = 256
- M = 100
- \rightarrow $K = \{10 50\}$
- > 500 random vectors for each K
- Individual random Gaussian
 observation matrix for each vector

A*OMP outperforms other algorithms!

A*OMP Performance – 1D

- Nonzero coefs. drawn from uniform distribution U[-1,1]
- N = 256
- M = 100
- $Figspare K = \{10 50\}$
- 500 random vectors
- Individual random Gaussian observation matrices

A*OMP outperforms other algorithms!

Problem: CS reconstruction of well-known images

- block-processing (8x8 blocks)
- 14-sparse (preprocessed) blocks in Haar Wavelet Basis
- 32 Gaussian observations from each block

Reconstruction Error (peak-SNR)

	ВР	OMP SP	Mul-A*OMP		
				B = 2	B = 3
Lena	27.5	23.6	21.5	30.2	33.3
Tracy	34.6	30.8	27.9	38	42.5
Pirate	25.7	21.7	19.3	27.5	30.5
Cameraman	28.4	24.7	22.5	32.6	36.9
Mandril	22.3	18.4	16.1	24.1	26.7

Reconstructed Images

BP A*OMP

Reconstruction Details

Reconstruction Error per Pixel

Conclusions

- ➤ A*OMP: Multi-path search strategy that combines best-first search and OMP:
 - build up and dynamically evaluate the search tree
 - favor the paths that minimize the cost function
- Two dynamic cost functions (multiplicative and adaptive) in addition to the additive cost function
- Better reconstruction than OMP, SP and BP
- Matlab code available at:
 - http://myweb.sabanciuniv.edu/karahanoglu/research/
- Real time implementation is also coming soon...