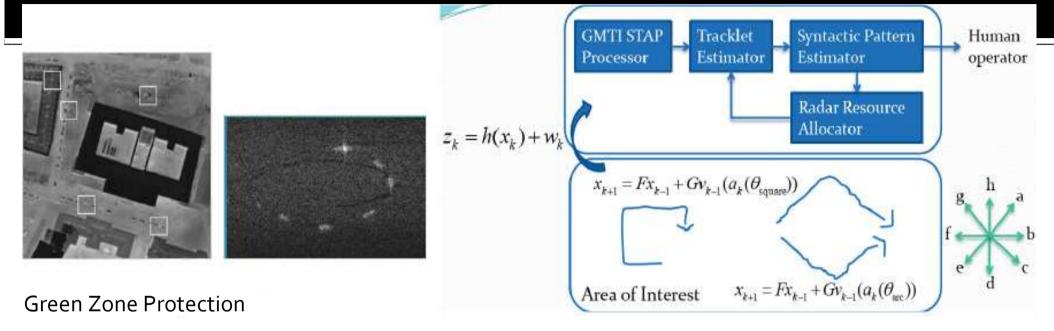
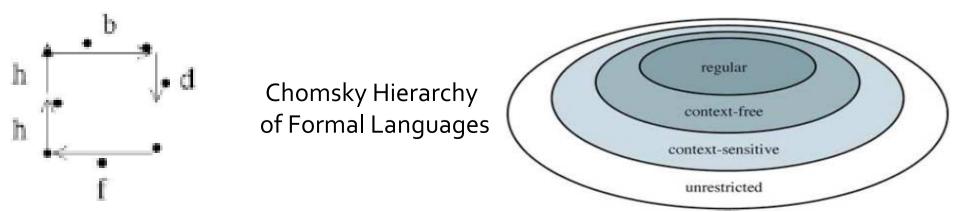

Vikram Krishnamurthy, University of British Columbia, Canada Coauthors: Mustafa Fanaswalla (UBC) and Langford White (U Adelaide)

# Destination Aware Target Tracking via Syntactic Signal Processing



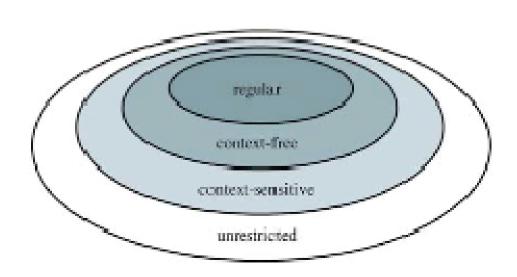

## Syntactic patterns for Intent Inference




State-Space Models for target movement are for short time scales. How to model these longer time-scale trajectories? How to do Bayesian estimation?

## Main Idea: Parsimonious Models




- How to assist human operators in intent inference? Meta-level signal processing humansensor interface (beyond physical sensor)
- Key Paradigm: (i) Stochastic Context-Free Grammar Model

   (ii) Reciprocal Markov Processes (1-dimensional Markov random fields).



# SCFG — Advantages

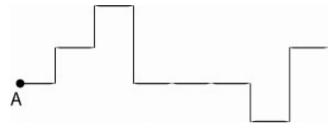
- Convenient model to capture domain knowledge of human operator
- Polynomial complexity Bayesian algorithms for estimating trajectory type (originating from Bioinformatics, Durbin, Eddy, Biological Sequence Analysis, 1998.
- Scale-invariance and Rotation-invariance (Robust)
- Efficient model (in terms of entropy) since finite state automata are a subset of context-free grammars



Begin if

•••

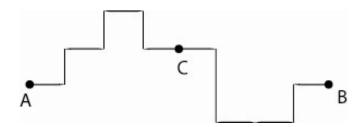
•••


End if



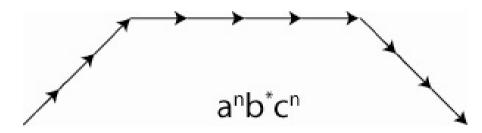

## Trajectory Modeling – beyond Markoviana

### Example 1:

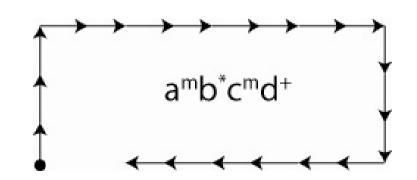

1.Random Walk



1.Markovian Bridge (goal-directed trajectory) = reciprocal process




2.SCFG (allows random time between waypoints)




Example 2 (cannot be modeled by an HMM):

Arc Trajectory



2.m-Rectangle Trajectory

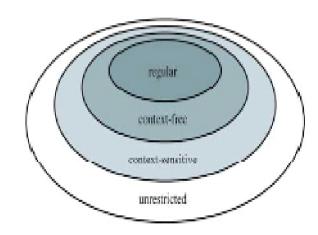




## **SCFG vs HMM**

## HMM (stochastic regular grammar or automata):

$$A = \begin{bmatrix} S_1 & S_2 \\ S_1 & 0.9 & 0.1 \\ S_2 & 0.2 & 0.8 \end{bmatrix}, \ B = \begin{bmatrix} a & b \\ S_1 & 0.6 & 0.4 \\ S_2 & 0.3 & 0.7 \end{bmatrix}$$


Non terminals =  $NT = \{\text{start}, S_1, S_2\},\$ 

Terminals =  $T = \{a, b, end\}$ . Production rules P:

$$S_1 \stackrel{0.54}{\rightarrow} aS_1, \ S_1 \stackrel{0.03}{\rightarrow} aS_2, \ S_1 \stackrel{0.36}{\rightarrow} bS_1, \ S_1 \stackrel{0.07}{\rightarrow} bS_2 \ S_2 \stackrel{0.12}{\rightarrow} aS_1, \ S_2 \stackrel{0.24}{\rightarrow} aS_2, \ S_2 \stackrel{0.08}{\rightarrow} bS_1, \ S_2 \stackrel{0.56}{\rightarrow} bS_2$$

HMM strings grow linearly from left to right.

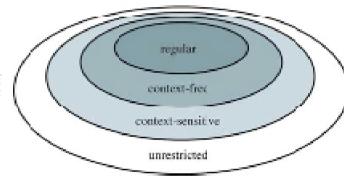
Example: 
$$S_1 \implies aS_2 \implies aaS_1 \implies aabS_1$$





## **SCFG vs HMM**

## Stochastic Context Free grammar: (NT, T, P) with


$$S_1 \stackrel{0.54}{\rightarrow} aS_1, S_1 \stackrel{0.03}{\rightarrow} aS_2, S_1 \stackrel{0.36}{\rightarrow} bS_1, S_1 \stackrel{0.07}{\rightarrow} bS_2$$

$$S_2 \stackrel{0.12}{\rightarrow} aS_1, S_2 \stackrel{0.24}{\rightarrow} aS_2, S_2 \stackrel{0.08}{\rightarrow} bS_1, S_2 \stackrel{0.3}{\rightarrow} bS_2,$$

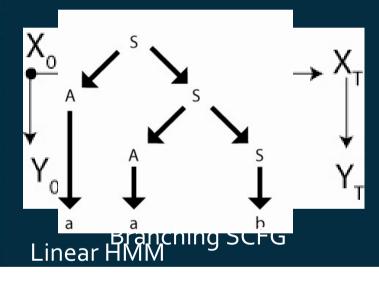
$$S_2 \stackrel{0.26}{\rightarrow} aS_2S_1$$
 CFG strings grow inside out or on a tree

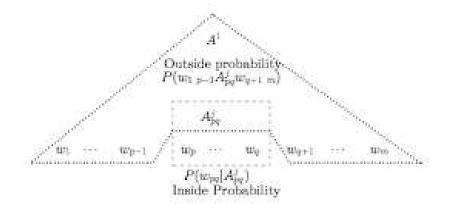
### Example:

$$S_1 \implies aS_2 \implies aS_2S_1 \implies aS_2aS_1 \implies aaS_2S_1abS_2$$



#### Remarks:


- 1.SCFGs are Multi-type Galton Watson Branching processes where the order matters each realization is a tree (Directed acyclic graph).
- 2.Realization Theory: Chomsky normal form, etc.
- 3. Pumping Lemmas to prove if a grammar does not belong to a particular class




# SCFG – Signal Processing Algorithms

**Syntactic Signal Processing**: Given data string (also called sequence of terminals)  $Y_T = (y_1, \dots, y_T) x$  denotes state, N denotes non-terminal.

|                    | HMM                | SCFG                                             |
|--------------------|--------------------|--------------------------------------------------|
| Forward<br>Filter  | $P(x_k, Y_{1:k})$  | $P(N_{k_1:k_2}, Y_{1:k-1}, Y_{k+1:T})$           |
| Backward<br>Filter | $P(Y_{k+1:T} x_k)$ | $P(Y_{k_1:k_2}N _{k_1:k_2})$                     |
| MAP                | Viterbi            | Earley Stolcke Parser<br>or Cocke-Younger-Kasami |
| EM<br>alg          | Forward/backward   | Inside Outside                                   |





SCFG Bayesian estimation is polynomial complexity – cubic in data length.



# An Arc Trajectory (anb+cn)

#### **VELOCITY TRACKLETS**

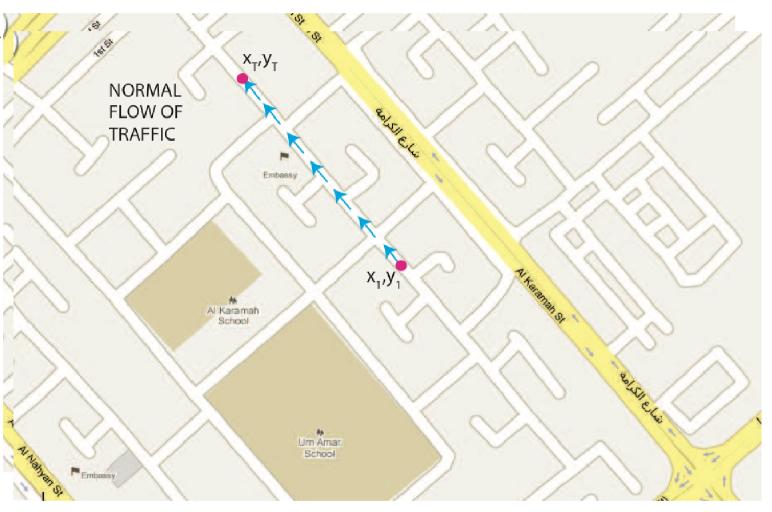
S -> A B C-> 
$$\frac{3\pi}{4}$$
 B C

$$\rightarrow \frac{3\pi}{4} \pi B C$$

$$\rightarrow \frac{3\pi}{4} \pi \pi C$$

$$\rightarrow \frac{3\pi}{4} \pi \pi \frac{5\pi}{4}$$

#### **GRAMMAR RULES**


S -> A X C

 $X \rightarrow A X C \mid A B C \mid B$ 

 $A \rightarrow \frac{3\pi}{4}$ 

 $B \rightarrow \pi B \mid \pi$ 

 $C \rightarrow \frac{5\pi}{4}$ 





## Summary and References

- 1. Syntactic Models allow for complex trajectories work seamlessly with legacy trackers.
- 2. Polynomial complexity Bayesian stochastic parsing (filtering) algorithms
- 3. Human—sensor interface SCFG parsing assists human in intent inference.
- 4. System-theoretic issues: Sub-criticality (polynomial stability); Constraints.
- 5. Sensitivity of posterior distribution to prior.
- 1. Durbin, Eddie, Krogh, *Biological Sequence Analysis*, Cambridge, 1998
- 2. Manning, Schultze, Foundations of Natural Language Processing.
- 3. K.S. Fu, Syntactic Pattern Recognition, Prentice Hall, 1982.
- 4. Wang, Krishnamurthy, Balaji, *Syntactic Tracking and Intent Inference for GMTI*, IEEE Trans Aerospace Electronic Systems, Jan 2012.
- 5. Krishnamurthy, Fanaswalla, *Intent Inference via Syntactic Tracking*, DSP, 2011 (Proc of DASP 2009)
- 6. Visnevski, Krishnamurthy, Haykin, *Syntactic Modeling of Multifunction Radars*, Proceedings of IEEE, 2007.

