Classifier Subset Selection and Fusion for Speaker Verification

Filip Sedlák¹, Tomi Kinnunen¹, Ville Hautamäki², Kong-Aik Lee², Haizhou Li^{1,2}

¹University of Eastern Finland, School of Computing, Joensuu, Finland

²Human Language Technology Department, Institute of Infocomm Research (I²R), A*STAR, Singapore

Classifier Fusion

Classifier Fusion

Scores from N classifiers

Fusion

Linear Fusion

Full set of N=5 classifiers

VS.

Subset of size 3

Full set of N=5 classifiers

VS.

Subset of size 3

- + straightforward
- + computationally efficient
- possibly over-fitting if N is large

Full set of N=5 classifiers

VS.

Subset of size 3

- + straightforward
- + computationally efficient
- possibly over-fitting if N is large

- + possibly better generalization
- requires subset selection

Full set of N=5 classifiers

VS.

Subset of size 3

- + straightforward
- + computationally efficient
- possibly over-fitting if N is large

- + possibly better generalization
- requires subset selection

Can a subset fusion give better performance than the full-set?

Excluded classifier

Train **S-Cal** [1] score warping for each individual subsystem

$$SCal(s) = \log \frac{(\log it^{-1} \alpha)(e^{as+b} - 1) + 1}{(\log it^{-1} \beta)(e^{as+b} - 1) + 1} \qquad \log it(x) = \log \frac{x}{1 - x}$$
$$C_{llr} = \frac{1}{K} \sum_{i=1}^{K} \log (1 + e^{-s_{Target}}) + \frac{1}{L} \sum_{j=1}^{L} \log (1 + e^{s_{Non-Target}})$$

[1] Niko Brummer and Johan du Preez, "Application-Independent Evaluation of Speaker Detection", Computer Speech and Language, 2005.

$$C_{\text{wlr}} = \frac{P}{K} \sum_{i=1}^{K} \log(1 + e^{-s_{\text{Target}} - \log(P)}) + \frac{1 - P}{L} \sum_{j=1}^{L} \log(1 + e^{s_{\text{Non-Target}} + \log(P)})$$
$$P = \log i t^{-1} \left(\log i (P_{\text{Target}}) + \log \frac{C_{\text{Miss}}}{C_{\text{FA}}} \right)$$

Here $C_{Miss} = 1$, $C_{FA} = 1$, $P_{Target} = 0.001$ (i.e. the 'new' NIST cost function).

[2] Niko Brummer, "Application-Independent Evaluation of Speaker Detection", Odyssey 2004.

 $\begin{aligned} & \text{DCF}(\theta) = C_{\text{Miss}} P_{\text{Miss}}(\theta) P_{\text{Target}} + C_{\text{FA}} P_{\text{FA}}(\theta) (1 - P_{\text{Target}}) \\ & \text{MinDCF} = \min \text{DCF}(\theta) \\ & \text{Here } C_{\text{Miss}} = 1, \quad P_{\text{Target}} = 0.001 \text{ (i.e. the 'new' NIST cost function).} \end{aligned}$

[3] http://www.itl.nist.gov/iad/mig/tests/sre/

 $DCF(\theta) = C_{Miss} P_{Miss}(\theta) P_{Target} + C_{FA} P_{FA}(\theta)(1 - P_{Target})$ $ActDCF = DCF(\theta_{Trainset})$ Here $C_{Miss} = 1$, $C_{FA} = 1$, $P_{Target} = 0.001$ (i.e. the 'new' NIST cost function). [3] http://www.itl.nist.gov/iad/mig/tests/sre/

Base Classifiers (I4U, NIST 2010)

	Classifier	Feature	Evalset1 EER (%)	Evalset2 EER (%)
1	GMM-UBM	PLP	3.95	4.99
2	Joint Factor Analysis	PLP	4.24	4.12
3		PLP	4.24	3.75
4	·	LPCC	4.59	5.74
5	GMM-SVM	PLP	5.65	5.49
6	Kullback Laiblar	MFCC	4.99	4.37
7	Divergence	LPCC	6.45	5.37
8	Ŭ	MLF	5.81	4.74
9		LPCC	4.24	6.52
10		SWLP	10.20	5.87
11	GMM-SVM Feature Transformation	PLP	8.13	6.12
12	GMM-SVM Bhattacharyya Distance	PLP	5.40	3.03

All datasets: interview-telephone,

female trials

Trainset, Evalset1: NIST SRE 2008

Evalset2: NIST SRE 2010

1000 x ActDCF

1000 x ActDCF

Realistic use-case

Fusion is trained on the **trainset**, subset is selected based on the **best** performance on the **trainset**.

1000 x ActDCF

Realistic use-case

Fusion is trained on the **trainset**, subset is selected based on the **best** performance on the **trainset**.

Best subset selection oracle

Fusion is trained on the **trainset**, subset is selected based on the **best** performance on the **evalset1**.

1000 x ActDCF

Worst subset selection oracle Fusion is trained on the trainset, subset is selected based on the worst performance on the evalset1.

Realistic use-case

Fusion is trained on the **trainset**, subset is selected based on the **best** performance on the **trainset**.

Best subset selection oracle

Fusion is trained on the **trainset**, subset is selected based on the **best** performance on the **evalset1**.

Subset Performance on Evalset2 (NIST2010), Pooled Genders

Conclusions

- Subset fusion has the potential to outperform the full set fusion.
- Further study should focus on subset selection methods.

Subset size

Following are support slides...

Score Sets

	Trainset	Devset	Evalset
Trials	NIST2008 itv-tel female	NIST2008 itv-tel female	NIST2010 itv-tel female
Target	263	283	801
Non-target	27 315	27 195	30 254

Error Bounds

- Best individual base system
- Full set fusion

Weights trained on	Best subset selected on	Performance evaluated on	
Trainset	Trainset	Devset/Evalset	'Real'
Trainset	Devset/Evalset	Devset/Evalset	'Best Real'
Devset/Evalset	Devset/Evalset	Devset/Evalset	'Best Oracle'