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Key Idea

• Use Bayesian approaches to improve speaker verification.

• How

1. Use Bayesian approaches for parameter estimation
2. Bayesian approaches provide a principled way to account for parameter

uncertainty

• Two main causes of performance degradation in speaker verification

1. Noise
2. Mismatch
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Key Idea cont.

• Exploit the link between enhancement and speaker recognition.

• Make use of speaker specific priors
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Outline

• Speaker Verification

• Bayesian Inference

• Variational Bayesian inference

• Probabilistic model

• Experimental results
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Background: Speaker Verification

• The basic task is to determine whether a given speaker is speaking in a
particular speech segment [Bimbot et al. 2004].

• Thus given a speech segment X we test the following hypotheses

– H0: X is from speaker S
– H1: X is not from speaker S

• Target speakers are modelled using speaker specific GMMs

• A universal background model (UBM) is used to test the alternate
hypothesis H1.
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Speaker verification cont.

• The likelihood ratio is compared to a threshold in order to determine
which hypothesis is correct.

• For each trial we compute the score

Score = log p(X|TargetModel) − log p(X|UBM).

where X are the features computed from the test utterance. One of the
most popular parameterizations are Mel Frequency cepstral coefficients
(MFCCs) [Reynolds and Rose 1995]

• Threshold in the hypothesis test determines the decision

• Trade off between probability of false alarm and probability of missed
detection

• Detection Error tradeoff curves popular in the speaker verification
community

• Performance metric is the equal error rate (EER).
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Outline

• Speaker Verification

• Bayesian Inference

• Variational Bayesian inference

• Probabilistic model

• Experimental results
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Background: Bayesian Inference

• Two main approaches to parameter estimation

1. Maximum likelihood: Parameter an unknown constant
2. Bayesian Inference: Parameter a random variable

θ X

p(X; θ)

(a) Maximum likelihood

θ

∼ p(θ)

X

p(X|θ)p(θ)

(b) Bayesian Inference

• Key quantities

1. Maximum likelihood: The likelihood p(X; θ)
2. Bayesian Inference: The posterior p(θ|X) ∝ p(X|θ)p(θ)
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Background: Bayesian Inference

• In the Bayesian framework, the parameters of our probabilistic model are
treated as random variables governed by a prior p(Θ).

• The posterior is a central quantity in Bayesian inference and is given by

p(Θ|X) =
p(X|Θ)p(Θ)∫
p(X|Θ)p(Θ)dΘ

• Bayesian estimators are derived to minimize various expected costs

Θ̂ = arg min
Θ

∫
C(Θ − Θ̂)p(Θ|X)dΘ

• We can obtain parameter estimates such as Θ̂MMSE =
∫

Θp(Θ|X)dΘ.

which corresponds to C(Θ − Θ̂) = ‖Θ − Θ̂‖2

• These integrals are often intractable.
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Variational Bayesian (VB) Inference

• VB is an approximate Bayesian inference technique [Bishop 2006].

• We use VB to obtain an approximation q(Θ) to the intractable posterior
p(Θ|X) which minimizes the Kullback-Leibler (KL) divergence between
q(Θ) and p(Θ|X) with q(Θ) constrained to lie within a tractable
approximating family.

q(Θ)
p(Θ|X)

Figure 1: Approximating the intractable posterior
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Variational Bayesian (VB) Inference cont.

• To ensure tractability we assume that the posterior can be written as a
product of factors depending on disjoint subsets of Θ = {θ1, . . . , θM}.

•

q(Θ) =
M∏
i=1

qi(θi). (1)

• We determine the optimal form of qj(θj) denoted by q∗j (θj) that
minimizes D(q||p)

•
log q∗j (θj) = E{log p(X,Θ)}q(Θ\j) + const. (2)
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Speaker verification

• We work in the log spectral domain

• The observed signal is clean speech corrupted by additive noise

y[t] = s[t] + n[t]

• To obtain the log spectrum we take the DFT

Y [k] = S[k] + N [k]

and take the logarithm of the power spectrum y = log |Y [:]|2

• It can be shown [Frey et al.]

y ≈ s + log(1 + exp(n− s))

• And
p(y|s,n) = N (y|s + log(1 + exp(n − s)),ψ).
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Speaker verification

zs

s n

y

• The joint distribution of this model
is

p(y, s, zs,n) = p(y|s,n)p(s|zs)p(zs)p(n).

• The prior over s is a speaker dependent GMM.

p(s|`) =

Ms∑
m=1

πs
`mN (s;µs

`m,Σs
`m)

where ` ∈ L = {TargetSpeaker, UBM}

• zs is an indicator variable to indicate ‘speaker’ and mixture component.
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VB Algorithm

• We assume an approximate posterior q(Θ) that factorizes as follows

q(Θ) = q(s)q(zs)q(n).

• The forms of the factors are

– q∗(s) = N (s;µ∗
s ,Σ

∗
s)

– q∗(n) = N (n;µ∗
n,Σ

∗
n)

– q∗(zs) =
∏Ms|L|

i=1 (γi)
zs,i

• We enhance the observed log spectra by computing the posterior mean
of the clean log spectra.

• Derive MFCCs from the enhanced log spectra for verification
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Speaker verification Experiments

• We use the TIMIT data set and the MIT Mobile Device Speaker
Verification Corpus (MDSVC).

• Train a UBM using 300 speakers

• The initial verification experiments were performed with the test
utterances corrupted by additive white Gaussian noise at various input
SNRs.

• Two true trials and 20 impostor trials per speaker

• Since there are 630 speakers we get 1260 true trials and 12600 impostor
trials

• For each trial compute the score

Score = log p(X|TargetModel) − log p(X|UBM).
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Speaker verification Experiments cont.

• We compare the VB algorithm to feature domain intersession
compensation (FDIC) [Castaldo 2007].

• This is a feature-domain technique

• Observed features are projected onto a session independent subspace

• This compensates for mismatch between training and testing conditions.

• The projection matrix is determined from training data.

ôt = ot −
M∑

m=1

γm(ot)Umx
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Speaker verification Experiments cont.

Table 1: Speaker verification EER (%) for the entire TIMIT data set

SNR (dB)
System 10 20 22 24 26 28 30

MFCCs (Baseline) 43.49 23.25 18.97 15.24 11.98 9.21 6.83
VB (MFCC) 26.51 11.83 9.44 7.46 6.27 4.84 3.65

FDIC 33.25 20.56 17.94 15.63 14.84 12.62 10.56
Log Spectra 49.68 45.16 43.89 43.17 42.06 40.79 40.48

VB (Log Spectra) 44.68 43.57 42.78 42.22 41.51 40.40 40.71
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Speaker verification Experiments cont.
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• Speaker verification performance for the entire TIMIT data set at 30dB

• Equal Error rate (EER) is reduced by about half from 6.83% to 3.65%.
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Speaker verification Experiments cont.

Table 2: Speaker verification EER (%) for the entire TIMIT data set in
factory noise

SNR (dB)
System 0 5 10 15 20 25 30

MFCCs (Baseline) 46.79 39.13 27.78 15.95 7.54 2.94 1.67
VB (MFCC) 35.48 23.49 11.90 6.11 3.17 2.06 1.51
Log Spectra 47.22 46.35 44.05 40.85 37.54 35.40 34.84

VB (Log Spectra) 44.84 42.06 39.92 37.78 35.87 35.08 35.48
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Speaker verification Experiments cont.

• The MIT Mobile Device Speaker Verification Corpus (MDSVC).

– Speech recorded in an office, hallway, and street intersection.
– 48 Target speakers.
– 40 impostors.
– Speaker models trainied using office data.

21



Speaker verification Experiments cont.

  0.1   0.2  0.5    1     2     5     10    20    40    60    80  
  0.1 
  0.2 

 0.5  
  1   
  2   

  5   

  10  

  20  

  40  

  60  

  80  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Speaker Detection Performance

 

 

Intersection
Hallway
Office

Table 3: Speaker verification results for MDSVC test data in the three
different environments

Location EER (%)
Office 14.24

Hallway 22.92
Intersection 28.82
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Speaker verification Experiments cont.

Table 4: Speaker verification EER (%) for the MDSVC data set

System Intersection EER
MFCCs (Baseline) 28.82

VB (MFCC) 24.54
FDIC 27.89

Log Spectra 42.71
VB (Log Spectra) 40.63
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Speaker verification Experiments cont.
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Speaker verification Experiments cont.

• For the SRE data experiments we use the 2004 corpus

• Results are shown for the 1side-1side condition

• We determine the improvement in performance in trials with telephone
type mismatch between training data and testing data

• Gender dependent UBMs with 512 mixture coefficients were trained using
approximately 20 hours of speech.

• Speaker models were then obtained using MAP adaptation with only the
means of the UBM being adapted.

• We use 19 dimensional MFCCs extracted using a 20ms window with 50%
overlap.

• RASTA processing and CMS is performed.
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Speaker verification Experiments cont.
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• our baseline system has an EER of 13.89% and the VB system has an
EER of 13.43%.

• Mismatched: EER reduces from 16.53% to 15.70%, Matched: EER
reduces from 11.58% to 11.23%
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Conclusion

• We have presented a log spectral VB algorithm for speaker verification

• Performance gains are reported in additive noise

• Mismatch compensation has been demonstrated

• The technique requires clean speech to train models

• Only modest gains obtained for SRE data
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