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Front-end Speaker Adaptation

Front-end Transforms:

Linear transforms
Feature-space MLLR (i.e. CMLLR) [Gales’98])
Discriminative linear transform [Wang’03]

Non-linear transforms ([Olsen’03, Visweswariah’04,
Saon’04])

FMLLR variants:

Q-FMLLR ([Varadarajan’08])

Full-covariance FMLLR ([Povey06, Ghoshal’08])
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Original FMLLR

Definition (Feature-space Maximum Likelihood Linear Regression)

Given adaptation data xt , t = 1, ...,T of a speaker, find an affine
transform to maximize the likelihood of adaptation data given the
current model.

yt = Axt + b = W ξt

ξt =

[
xt

1

]
: input feature extended with 1

W : extended transformation matrix [A b] with square matrix A of
size d × d (d is the size of xt) and bias term b
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Original FMLLR (cont.)

The objective function: log likelihood of the transformed data
given the current model, plus the Jacobian compensation term

Q(W ) = T log det(A)− 1

2

G∑
j=1

T∑
t=1

γt(j)(W ξt−µj)
TΣ−1

j (W ξt−µj)

j : index of Gaussian components

µj ,Σj : mean and diagonal covariance matrix

γt(j): Gaussian occupation probabilities.
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Extend A to non-square matrix

Instead of just using one frame xt , we concatenate it with its
neighboring frames to make a context vector x̂t

Example (context size = 1)

x̂t = [xt−1 xt xt+1]. Find an affine transform to x̂t to maximize
the likelihood

yt = Ax̂t + b = W ξ̂t

Now the size of A is d × 3d
How to estimate non-square matrix A?

Note: there is no direct way to compute the derivative of objective
function Q(W ) with respect to x̂t .
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Compensation term when A is square

Find the Jacobian compensation term to make Ly + C = Lx :
simply assume y = Ax , A is square and invertible

=⇒ compensation term C = 1
2 log

det(Σy )
det(Σx )

Proof.

Lx = −
1

2
(x − µx )

T Σ−1
x (x − µx )−

1

2
log det(Σx )

Ly = −
1

2
(y − µy )T Σ−1

y (y − µy )−
1

2
log det(Σy )

(y − µy )T Σ−1
y (y − µy ) = (x − µx )

T AT (AΣxA
T )−1A(x − µx )

= (x − µx )
T Σ−1

x (x − µx )

Set Lx = Ly + C, C = 1
2

log
det(Σy )

det(Σx )
= 1

2
log det(AΣxAT )

det(Σx )
= log det(A).
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Compensation term when A is not square

we assume the compensation term C remains the same:
C = 1

2 log det(AΣx̂A
T )

(drop out log det(Σx̂) because it does not depend on A)

the objective function becomes:

Q(W ) =
1

2
T log det(AΣx̂A

T )−1

2

N∑
j=1

T∑
t=1

γt(j)(W ξ̂t−µi )
TΣ−1

j (W ξ̂t−µj)

The first term is a replacement of the Jacobian term when A is not
a square matrix, while Σx̂ is the covariance matrix computed from
x̂t , t = 1, ...,T .
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Compute the obj. function using stats files

Definition (mean and variance stats)

K =
NX

j=1

TX
t=1

γt(j)Σ
−1
j µj ξ̂t

T
, size d × (3d + 1)

Gi =
NX

j=1

TX
t=1

γt(j)σ
−1
j,l ξ̂t ξ̂t

T
, size (3d + 1)× (3d + 1), i = 1, ..., d

the objective function for context filtering and its gradient

Q(W ) =
1

2
T log det(AΣx̂A

T ) + tr(W T K)−
1

2

nX
j=1

tr(W T Ej,jWGj )

∂Q

∂W
= T × [(AΣx̂A

T )−1AΣx̂ , 0] + K −
nX

j=1

Ej,jWGj
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Solve the optimization problem

1 row-by-row iterative update algorithm in [Gales 98] cannot be
applied here

the determinant of a square matrix equals the dot product of
any given row with the corresponding row of cofactors.
It is not obvious how to extend this algorithm to non-square
matrices

2 use limited memory BFGS algorithm along with line search
(HCL package)

only need functions to evaluate the objective function and its
gradient
gradient magnitude/maximum number of iterations are set to
stop the opt. module
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Experimental Setup
Results

Training data and Models

Majority of the training data was collected in stationary cars

Total 800K training utterances/800 hours

Word-internal with pentaphone context, with 830
context-dependent states and 10K Gaussians

With LDA 40-dim features, built a ML model, a discriminative
trained BMMI (boosted maximum mutual information)
model, and a FMMI (feature-space maximum mutual
information) model.
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Results

Test data

Recorded in cars at three different speeds: 0mph (idling),
30mph and 60mph.

Four tasks are selected in the test set: addresses, digits,
commands and radio control

Total about 26K utterances and 130K words
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SNR distribution
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SNR distribution

−5 0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

0mph

30mph60mph

SNR distribution at each speed condition

Jing, Karthik, Peder, and Vaibhava ICASSP 5/24/2011



Motivation
Maximum Likelihood Context Filtering

Experiments and Results
Summary

Experimental Setup
Results

Experiments

Unsupervised speaker adaptation on the corresponding
ML/BMMI/FMMI models

MLCF-n: maximum likelihood context filtering with context
size n

MLCF transform initialization: zero matrices for all the
frames/identity matrix for the center

MLCF-n-init: uses FMLLR as the starting point for the center
frame
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Adaptation results on the ML model

WER/SER 0mph 30mph 60mph

baseline 0.77/3.34 1.28/5.15 2.65/8.94

FMLLR 0.57/2.42 0.94/3.82 1.87/6.29
MLCF-2 0.55/2.41 0.93/3.84 1.44/5.49
MLCF-1 0.54/2.31 0.95/3.91 1.48/5.54

MLCF-1-init 0.54/2.32 0.96/3.89 1.50/5.58

Table: Comparison of FMLLR and MLCF adapted on the ML model.

Compared to FMLLR, on noisy 60mph data, 23%/13% relative
gain on WER/SER over FMLLR, tiny gains on 0mph/30mph

Starting with FMLLR for the center frame does not provide any
advantage over the identity matrix
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Effect of adaptation data

10−utt 30−utt 60−utt all
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Number of utterances for adaptation
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Comparison of FMLLR and MLCF on 60mph data

 

 

FMLLR−WER
MLCF−WER

in 10-utt case, MLCF-1
gains even more over
FMLLR — 30% relative

for FMLLR there is 15%
degradation from
all-utterance to
10-utterance, while for
MLCF-1, only 7% relative
degradation.
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Visual comparison of FMLLR and MLCF
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Adaptation results on the BMMI model

WER/SER 0mph 30mph 60mph

baseline 0.63/2.76 0.96/3.82 2.02/6.95
FMLLR 0.46/1.98 0.75/3.06 1.47/5.24
MLCF-1 0.45/1.91 0.74/3.05 1.33/4.68

MLCF-1-init 0.43/1.86 0.74/3.04 1.33/4.77

Table: Comparison of FMLLR and MLCF adapted on the BMMI model.

9%/11% relative improvement of WER/SER over FMLLR on the
noisy 60mph data

starting with FMLLR transform for the central frame does not
provide any advantage over the identity transform.
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Adaptation results on the FMMI model

WER/SER 0mph 30mph 60mph

baseline 0.45/1.90 0.76/3.23 1.30/5.05
FMLLR 0.33/1.40 0.60/2.52 1.00/4.06
MLCF-1 0.32/1.31 0.61/2.56 0.96/3.84

MLCF-1-init 0.32/1.34 0.59/2.47 0.93/3.75

Table: Comparison of FMLLR and MLCF adapted on the FMMI model.

This time MLCF-1-init is better than MLCF-1, and gains 7%/9% relative
on WER/SER over FMLLR.
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Summary

MLCF: extend the full-rank square matrix of FMLLR to a
non-square matrix that uses neighboring feature vectors to
estimate the adapted central feature vector

MLCF is shown outperform FMLLR on noisy 60mph data:
23% on WER over FMLLR with adapted ML model, and
7%/9% on the FMMI/BMMI models.

Future work includes

use disc. ojective function or smoothing of disc. and ML
objective functions

check the interaction of context filtering with other front-end
noise robustness techniques (e.g. Spectral Substraction,
Dynamic Noise Adaptation)
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