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Motivation

Front-end Speaker Adaptation

Front-end Transforms:
@ Linear transforms

o Feature-space MLLR (i.e. CMLLR) [Gales'98])
o Discriminative linear transform [Wang'03]

e Non-linear transforms ([Olsen’03, Visweswariah'04,
Saon'04])
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Motivation

Front-end Speaker Adaptation

Front-end Transforms:
@ Linear transforms

o Feature-space MLLR (i.e. CMLLR) [Gales'98])
o Discriminative linear transform [Wang'03]

e Non-linear transforms ([Olsen’03, Visweswariah'04,
Saon'04])

FMLLR variants:
@ Q-FMLLR ([Varadarajan'08])
e Full-covariance FMLLR ([Povey06, Ghoshal'08])
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Motivation

Original FMLLR

Definition (Feature-space Maximum Likelihood Linear Regression)
Given adaptation data x;,t = 1, ..., T of a speaker, find an affine
transform to maximize the likelihood of adaptation data given the
current model.

yt:AXt“l_b:Wgt

& = [ )it ]: input feature extended with 1

W: extended transformation matrix [A b] with square matrix A of
size d x d (d is the size of x;) and bias term b
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Motivation

Original FMLLR (cont.)

The objective function: log likelihood of the transformed data
given the current model, plus the Jacobian compensation term

1
Q(W) = Tlog det(A —EZZ% YW — ) T H(Wee— )

j=1t=1

@ j: index of Gaussian components
@ 4, X;: mean and diagonal covariance matrix

@ 7:(j): Gaussian occupation probabilities.
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Motivation

Extend A to non-square matrix

Instead of just using one frame x;, we concatenate it with its
neighboring frames to make a context vector X;
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Motivation

Extend A to non-square matrix

Instead of just using one frame x;, we concatenate it with its
neighboring frames to make a context vector X;

Example (context size = 1)

Xt = [xt—1 Xt Xt4+1]- Find an affine transform to X; to maximize
the likelihood
yr =A%+ b= W&

Now the size of A is d x 3d
How to estimate non-square matrix A?
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Motivation

Extend A to non-square matrix

Instead of just using one frame x;, we concatenate it with its
neighboring frames to make a context vector X;

Example (context size = 1)

> |

Xt = [xt—1 Xt Xt4+1]- Find an affine transform to X; to maximize
the likelihood
yt:A)?t‘i‘b: Wé‘t
Now the size of A is d x 3d
How to estimate non-square matrix A?

4

Note: there is no direct way to compute the derivative of objective
function Q(W) with respect to X;.
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Maximum Likelihood Context Filtering

Compensation term when A is square

Find the Jacobian compensation term to make L, +C = L;:

simply assume y = Ax, A is square and invertible
det(X,)

— compensation term C = 1 5 log det(5)
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Maximum Likelihood Context Filtering

Compensation term when A is square

Find the Jacobian compensation term to make L, +C = L;:

simply assume y = Ax, A is square and invertible

— compensation term C = 1 5 log j::g):yg

Proof

(]
|
|
| =
-
—

Le = =5 (x = ) T2 (x = o) — 5 log det(x)

1 - 1
Ly = =50 —m) Ty — my) = Slog det(Z,)

Jing, Karthik, Peder, and Vaibhava ICASSP 5/24/2011



Maximum Likelihood Context Filtering

Compensation term when A is square

Find the Jacobian compensation term to make L, +C = L;:

simply assume y = Ax, A is square and invertible

— compensation term C = 1 5 log j::g):yg

Proof

(]
|
|
| =
-
—

Le = =5 (x = ) T2 (x = o) — 5 log det(x)

1 - 1
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Maximum Likelihood Context Filtering

Compensation term when A is square

Find the Jacobian compensation term to make L, +C = L;:

simply assume y = Ax, A is square and invertible

— compensation term C = 1 5 log j::g):yg

Proof

(]
|
|
| =
-
—

Le = =5 (x = ) T2 (x = o) — 5 log det(x)

1 - 1
Ly = =50 —m) Ty — my) = Slog det(Z,)

(=) E My —py) = (x— ) TAT(ASAT) T A(x — pax)
= (X - NX)TZ;I(X - HX)

det(X,) _ 1 det(AT A7)
o8 det(Zi) = 3 log —4a
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@ SetlLy=L,+C, C=1lo = log det(A).




Maximum Likelihood Context Filtering

Compensation term when A is not square

we assume the compensation term C remains the same:
C = 3log det(AXzAT)
(drop out log det(X ;) because it does not depend on A)
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Maximum Likelihood Context Filtering

Compensation term when A is not square

we assume the compensation term C remains the same:
C = 3log det(AXzAT)

(drop out log det(X ;) because it does not depend on A)
the objective function becomes:

1 1l .
QW) = leogdetAZA ZZ% YWEe—pui) TS (WEr—py)

J:]. t=1

The first term is a replacement of the Jacobian term when A is not
a square matrix, while X3 is the covariance matrix computed from
X, t=1,..., T.
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Maximum Likelihood Context Filtering

Compute the obj. function using stats files

Definition (mean and variance stats)

=
= s T

Z'yt(J)):j 1,uj§t ,size d x (3d + 1)

=1

.
SN
~

N
K=y
N

.
G = S veli)o; feebe size (3d+1) x (3d +1),i=1,....d
=1 t=

.
=
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Maximum Likelihood Context Filtering

Compute the obj. function using stats files

Definition (mean and variance stats)

= s T
'yt(j)):j 1,uj§t ,size d x (3d + 1)

.

1+ 1D

N

K= %
N N 15 aT . .

ve()o; &t s size (3d +1) x (3d +1),i=1,...,d

=1t

&
1
-

the objective function for context filtering and its gradient

n
QW) = %Tlogdet(AngT)-‘r tr(WTK) — %Z“(WTEJJWGJ)
j=1
0Q Ty-1 -
o = TxlAman AT, 01+ K -3 6,0

Jj=1
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Maximum Likelihood Context Filtering

Solve the optimization problem

@ row-by-row iterative update algorithm in [Gales 98] cannot be
applied here
e the determinant of a square matrix equals the dot product of
any given row with the corresponding row of cofactors.

e It is not obvious how to extend this algorithm to non-square
matrices
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Maximum Likelihood Context Filtering

Solve the optimization problem

@ row-by-row iterative update algorithm in [Gales 98] cannot be
applied here
e the determinant of a square matrix equals the dot product of
any given row with the corresponding row of cofactors.
e It is not obvious how to extend this algorithm to non-square
matrices
@ use limited memory BFGS algorithm along with line search
(HCL package)
e only need functions to evaluate the objective function and its
gradient
o gradient magnitude/maximum number of iterations are set to
stop the opt. module
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Experimental Setup
Experiments and Results Results

Training data and Models

@ Majority of the training data was collected in stationary cars

e Total 800K training utterances/800 hours

@ Word-internal with pentaphone context, with 830
context-dependent states and 10K Gaussians

@ With LDA 40-dim features, built a ML model, a discriminative
trained BMMI (boosted maximum mutual information)
model, and a FMMI (feature-space maximum mutual
information) model.
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Experimental Setup
Experiments and Results Results

Test data

@ Recorded in cars at three different speeds: Omph (idling),
30mph and 60mph.

@ Four tasks are selected in the test set: addresses, digits,
commands and radio control

@ Total about 26K utterances and 130K words
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Experimental Setup
Experiments and Results Results

SNR distribution
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Experimental Setup
Experiments and Results Results

SNR distribution

SNR distribution at each speed condition
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Experimental Setup
Experiments and Results Results

Experiments

@ Unsupervised speaker adaptation on the corresponding
ML/BMMI/FMMI models

@ MLCF-n: maximum likelihood context filtering with context
size n
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Experimental Setup
Experiments and Results Results

Experiments

@ Unsupervised speaker adaptation on the corresponding
ML/BMMI/FMMI models

@ MLCF-n: maximum likelihood context filtering with context
size n

@ MLCF transform initialization: zero matrices for all the
frames/identity matrix for the center

@ MLCF-n-init: uses FMLLR as the starting point for the center
frame
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Experimental Setup
Experiments and Results Results

Adaptation results on the ML model

| WER/SER | Omph 30mph 60mph

| baseline ] 0.77/3.34 | 1.28/5.15 | 2.65/8.94
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Experiments and Results Results

Adaptation results on the ML model

| WER/SER | Omph 30mph 60mph

baseline 0.77/3.34 | 1.28/5.15 | 2.65/8.94 |
FMLLR 0.57/2.42 | 0.94/3.82 | 1.87/6.29
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Jing, Karthik, Peder, and Vaibhava ICASSP 5/24/2011



Experimental Setup
Experiments and Results Results

Adaptation results on the ML model

| WER/SER | Omph 30mph 60mph

baseline [ 0.77/3.34 | 1.28/5.15 | 2.65/8.94
FMLLR | 0.57/2.42 | 0.94/3.82 | 1.87/6.29
MLCF-2 | 0.55/2.41 | 0.93/3.84 | 1.44/5.49
MLCF-1 ] 0.54/2.31 | 0.95/3.91 | 1.48/5.54
MLCF-1-init | 0.54/2.32 | 0.96/3.89 | 1.50/5.58

Table: Comparison of FMLLR and MLCF adapted on the ML model.

+ Compared to FMLLR, on noisy 60mph data, relative
gain on WER/SER over FMLLR, tiny gains on Omph/30mph

« Starting with FMLLR for the center frame does not provide any
advantage over the identity matrix
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Experimental Setup
Experiments and Results Results

Effect of adaptation data

Comparison of FMLLR and MLCF on 60mph data

FMLLR-WER
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Experimental Setup
Experiments and Results Results

Effect of adaptation data

Comparison of FMLLR and MLCF on 60mph data

2.
e ‘== FMLLR-WER
21l e - - - MLCF-WER )
. @ in 10-utt case, MLCF-1

2t e ] gains even more over

Lol R i FMLLR — 30% relative

’ Treeagd
e | @ for FMLLR there is 15%
= degradation from

17f 1 all-utterance to

16k | 10-utterance, while for

s N MLCF-1, only 7% relative

s T e degradation.

1.4 * *

10-utt 30-utt 60-utt all

Number of utterances for adaptation
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Experimental Setup
Experiments and Results Results

Visual comparison of FMLLR and MLCF

A FMLLR transform
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Experimental Setup
Experiments and Results Results

Visual comparison of FMLLR and MLCF
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Experimental Setup
Experiments and Results Results

Adaptation results on the BMMI model

| WER/SER | Omph | 30mph | 60mph |

baseline | 0.63/2.76 | 0.96/3.82 | 2.02/6.95
FMLLR | 0.46/1.98 | 0.75/3.06 | 1.47/5.24
MLCF-1 | 0.45/1.91 | 0.74/3.05 | 1.33/4.68
MLCF-1-init | 0.43/1.86 | 0.74/3.04 | 1.33/4.77

Table: Comparison of FMLLR and MLCF adapted on the BMMI model.

@ 9%/11% relative improvement of WER/SER over FMLLR on the
noisy 60mph data

@ starting with FMLLR transform for the central frame does not
provide any advantage over the identity transform.

Jing, Karthik, Peder, and Vaibhava ICASSP 5/24/2011



Experimental Setup

Experiments and Results Results

Adaptation results on the FMMI model

| WER/SER | Omph | 30mph | 60mph |
baseline 0.45/1.90 | 0.76/3.23 | 1.30/5.05
FMLLR | 0.33/1.40 | 0.60/2.52 | 1.00/4.06
MLCF-1 | 0.32/1.31 | 0.61/2.56 | 0.96/3.84

MLCF-1-init | 0.32/1.34 | 0.59/2.47 | 0.93/3.75

Table: Comparison of FMLLR and MLCF adapted on the FMMI model.

This time MLCF-1-init is better than MLCF-1, and gains 7%/9% relative

on WER/SER over FMLLR.

Jing, Karthik, Peder, and Vaibhava ICASSP 5/24/2011



Summary

Summary

@ MLCF: extend the full-rank square matrix of FMLLR to a
non-square matrix that uses neighboring feature vectors to
estimate the adapted central feature vector

@ MLCF is shown outperform FMLLR on noisy 60mph data:
23% on WER over FMLLR with adapted ML model, and
7%/9% on the FMMI/BMMI models.
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Summary

Summary

@ MLCF: extend the full-rank square matrix of FMLLR to a
non-square matrix that uses neighboring feature vectors to
estimate the adapted central feature vector

@ MLCF is shown outperform FMLLR on noisy 60mph data:
23% on WER over FMLLR with adapted ML model, and
7%/9% on the FMMI/BMMI models.

Future work includes
@ use disc. ojective function or smoothing of disc. and ML
objective functions
@ check the interaction of context filtering with other front-end
noise robustness techniques (e.g. Spectral Substraction,
Dynamic Noise Adaptation)
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