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Introduction and Motivation
• Speaker Diarization determines who spoke when in an audio stream.

• In case of meetings data, the recording is done with Multiple Distant

Microphones (MDM).

• In case of MDM data, the Time Delay of Arrival (TDOA) of the signal

to different microphones can be used as complementary information to

acoustic features (e.g. MFCC).

• This combination provides SoA results in Meetings diarization

[Pardo2007].



Introduction and Motivation
• Most common combination happens at model level, i.e., a

separate model (GMM) for MFCC and TDOA are estimated

and then combined by linear weighting [Pardo2007].

• Several studies have discussed the combination of multiple

diarization systems:

[1] Voting schemes between multiple systems.

[2] Initialization based on diarization output.

[3] Integrated approaches.

• Can MFCC and TDOA features be integrated using

independent diarization systems rather than independent

models? Is there any advantage on using systems rather than

model combination ?



Introduction and Motivation
• We previously introduced a non-parametric clustering system based on the

Information Bottleneck principle [Thisby98] working in a space of relevance

variables.

• State-of-the-art results using very limited computational complexity.

• Multiple features combination is easily obtained weighting different relevance

variable spaces instead of weighting log-likelihoods.

• Outline of the talk:

[1] Information Bottleneck Principle and single stream

diarization

[2] Model based combination

[3] System based combination

[4] Hybrid combination

[5] Experiments



Information Bottleneck principle
• Let X, be a set of elements to be clustered into a set of C

clusters.

• Let Y be a set of variables of interest associated with X.

• Let us assume that ∀xǫX and ∀yǫY the conditional distribution

p(y|x) is available.

• IB principle states that the clustering C should preserve as

much information as possible between C and Y while

minimizing the distortion of C and X.

• This means the following objective function:

− β I(X,C) + I(C, Y )



IB optimization
• Objective function can be optimized in agglomerative or sequential fashion.

• Agglomerative IB [Slonim99]:

1 Start with trivial clustering of |X| clusters.

2 Merges clusters that produce the minimum loss in the objective

function. The loss can be computed in close form as the Jensen-Shannon

divergence.

3 Merging stops when a stopping criterion is met.

• The output of the aIB is an hard partition of elements |X| in C clusters:

- p(ci|xt) ∈ {0, 1}, meaning that each segment is assigned to a cluster

(a speaker).

- p(Y |C) meaning that each cluster is characterized by a relevance

variable distributions.

- The distribution p(Y |ci) is obtained averaging the distributions

p(Y |xt) for all the segments xt assigned to the clustering ci.



IB Diarization

• Elements of X are uniform speech chunks to be clustered.

• Elements of Y are components of a background GMM trained on the entire

meeting.

• Probabilities P (Y |X) can be trivially estimated by Bayes rule.



Multiple feature combination
• If MFCC and TDAO features are available, the combination can

happen in the space of relevance variables.

• Two aligned background models Mmfcc and Mtdoa are estimated for

each feature stream.

• Two sets of relevance variables p(Y |xt, Mmfcc) and p(Y |xt, Mtdoa)

are then estimated and averaged.

p(Y |xt) = Wmfcc · p(Y |xt, Mmfcc) + Wtdoa · p(Y |xt, Mtdoa)

where (Wmfcc, Wtdoa) are weights and Wmfcc + Wtdoa = 1

• Weights are chosen minimizing the error on the development data set.

• Once p(Y |xt) is estimated, the rest of the diarization stays the same.



Multiple feature combination



Multiple Systems Combination
• Instead of combining relevance variables before clustering, the weighting can

happen after cluster, i.e., after speaker diarization is performed.

• Two diarization systems Smfcc and Stdoa based on two aligned background models

Mmfcc and Mtdoa.

• They respectively produce two cluster assignments of segments xt into clusters ci:

p(ci|xt, Smfcc) ∈ {0, 1} and p(ci|xt, Stdoa) ∈ {0, 1} as well as two relevance

variable distributions for each cluster p(Y |ci, Smfcc) and p(Y |ci, Stdoa).

• Two new distributions of relevance variables P (Y |xt) can be obtained as:

P (Y |xt, Smfcc) =
X

ci

p(Y |ci, Smfcc) · p(ci|xt, Smfcc) (1)

P (Y |xt, Stdoa) =
X

ci

p(Y |ci, Stdoa) · p(ci|xt, Stdoa) (2)

• the weighting can happen as:

p(Y |xt) = WmfccP (Y |xt, Smfcc) + WtdoaP (Y |xt, Stdoa) (3)



Multiple Systems Combination

• Note that P (Y |xt, S.) is estimated using all the frames that are assigned to the

same cluster thus on significantly more data than in case of model based

combination.



Hybrid System-Model Combination
• Instead of combining the relevance variables from two background models or

from two diarization systems, a third hybrid solution can be considered.

• It is possible to combine the relevance variable of a first system before

clustering with the relevance variables of a second system after clustering,

i.e.,

p(Y |xt) = Wmfcc p(Y |xt, Smfcc) + Wtdoa p(Y |xt,Mtdoa)

a. p(Y |xt, Smfcc) is obtained from the output of a MFCC diarization system.

b. p(Y |xt, Mtdoa) is obtained from a TDOA background model.

• In this case p(Y |xt, Smfcc) is estimated using more data than

p(Y |xt, Mtdoa).

• A similar combination can be obtained inverting the order of MFCC and

TDOA.



Hybrid System-Model Combination



Experiments RT
• The experiments are repeated on a collection of 17 meetings from the Rich

Transcription (RT) evaluation campaigns.

• Multiple Distant Microphone conditions (MDM), beam-formed to produce a

single enhanced speech signal.

• TDAO features are extracted using GCC-PHAT; their dimension is equal to

the number of microphone arrays minus one.

• The weights are estimated from a development dataset composed of 12

recordings across 6 meetings rooms.

• The system performance is evaluated using Diarization Error Rate (DER)

that is the sum of speech/non-speech segmentation and speaker errors.

Since we use the same speech non-speech segmentation across all the

experiments only speaker error is reported.



Experiments RT
• Comparison between IB and HMM/GMM whenever MFCC and TDOA

features are combined.

aIB HMM

Speaker Error 11.6 12.4

• Weights obtained on the development data set are:

aIB HMM

(Pmfcc, Ptdoa) (0.7, 0.3) (0.9, 0.1)

• Weighting is different as the two systems combines different quantities:

probabilities in case of IB and log-likelihoods in case of HMM/GMM.

• The combination using relevance variables outperforms combination using

log-likelihoods.



Experiments RT

Table 1: Speaker Error for the proposed combination schemes: model based, system

based and the two hybrid combinations.

Case MFCC TDOA (Wmfcc, Wtdoa) Speaker Error

1 Model Model (0.7,0.3) 11.6 (–)

2 System System (0.7,0.3) 7.3 (+37%)

3 System Model (0.8,0.2) 10.5 (+9%)

4 Model System (0.6,0.4) 9.4 (+19%)

• System combination largely outperforms other model and hybrid-combinations.

• In the model based combination, p(Y |xt) is obtained weighting p(Y |xt, Mmfcc)

and p(Y |xt, Mtdoa) estimated using observations from the segment xt.

• In the system based combination, p(Y |xt) is obtained weighting p(Y |xt, Smfcc)

and p(Y |xt, Stdoa) estimated using the output of systems Smfcc and Stdoa thus

significantly more data.



Experiments
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Model combination

System combination
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• Improvements are larger in meetings where the difference (in terms of

speaker error) between MFCC and TDOA is high.

• Weights move towards the feature stream that has been estimated on the

diarization output, thus on more data.



Conclusion
• We investigated whether MFCC and TDOA features can

be combined trough system based combination.

• The study is based on the Information bottleneck
diarization system and three models are proposed:

[1] Model based combination
[2] System based combination
[3] Hybrid model-system combination

• System based combination largely outperforms both
model and hybrid schemes.

• Improvement comes from robust estimation of TDOA
relevance variables obtained from the diarization output.



Thank You
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