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Motivation

� Noise power estimation, a crucial part of speech 
enhancement

� Effective on quality and intelligibility of enhanced 
speech

� Many new noise power estimators available  

� Framework aims: 

� Presenting performance of some recent and some well-
known noise estimators

� New measure for more comprehensive evaluation of 
performance
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Overview of algorithms

� Minimum statistics (MS) [Martin, 2001]

� Minima-controlled recursive averaging (MCRA) [Cohen, 2002]

� 3 other algorithms belonging to MCRA category 

� Improved minima-controlled recursive averaging (IMCRA) 
[Cohen, 2003] 

� EMCRA [Fan et al., 2007]

� MCRA-MAP [Kum et al., 2009]

� Subspace noise tracking (SNT) [Hendriks et al., 2008]

� 2 algorithms based on minimum mean-squared error 
(MMSE) estimation 

� MMSE-Yu [Yu, 2009]

� MMSE-Hendriks [Hendriks et al., 2010]
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Evaluation measures

� Two issues taken into account:

� Evaluation shall be independent of speech enhancement 
system

� To separate effects of any specific speech enhancement 
system

� Having a suitable reference noise is necessary, since

� During speech activity instantaneous noise power is not 
available

� Most noise reduction approaches require a smoothed noise 
estimate

� To reduce impact of random fluctuations in original noise 
periodogram
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Evaluation measures ...
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� Mean estimation error: averaged log distance                

between the estimated noise PSD       and reference 

noise PSD

� Estimation error variance 

meanLogErr
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Variance computation 
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Experimental results

� 8 algorithms are considered

� Sampling frequency of all signals is 8 KHz

� Window length as well as the DFT length 256 samples

� Clean speech signals from TIMIT database 

� One female speech and one male speech; each one with 2 
minutes length

� 7 different types of noise signals (taken from SOUND-IDEAS)

� WGN, VaryingStep WGN, Sinusoidally modulated WGN, 
Babble, Car, Traffic1, Traffic2

� The range of input SNR is from -5 dB to 20 dB

� Reference noise: 

� Several methods for smoothing were tested

� Finally, a recursive temporal smoothing of noise periodograms 
was found to be more appropriate (smoothing factor 0.9)
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Experimental results …
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Experimental results …
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Performance results 

of 8 algorithms in the 

case of WGN in terms 

of  LogErr-mean and 

LogErr-Var
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Experimental results …

ICASSP 2011 11

Performance results 

of 8 algorithms in the 

case of Sinusoidally 

modulated noise in 

terms of  LogErr-

mean and LogErr-Var
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Experimental results …
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Performance results 

of 8 algorithms in 

the case of Babble 

noise in terms of  

LogErr-mean and 

LogErr-Var
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Experimental results …
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Performance 

results of 8 

algorithms in the 

case of Traffic2 

noise in terms of  

LogErr-mean and 

LogErr-Var
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Experimental results …
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� Estimation error variance gives additional insight

� It measures the amount of fluctuations in the estimated noise 

PSD (which probably is related to tracking of speech power) 

� Better evaluation of algorithms having very close performance in

terms of mean estimation error

Female speech degraded by Sinusoidally modulated WGN with 20dB input SNR 
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Experimental results …
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Conclusions

� Some of noise power estimators are very susceptible to 

the level of input SNR

� Estimation error variance allows us to measure 

amount of fluctuations in tracking noise power, and 

perhaps producing musical noise

� For non-stationary noise a few methods show to be 

robust

� MMSE-Hendriks  � the most robust noise power 

estimator according to our experiments
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