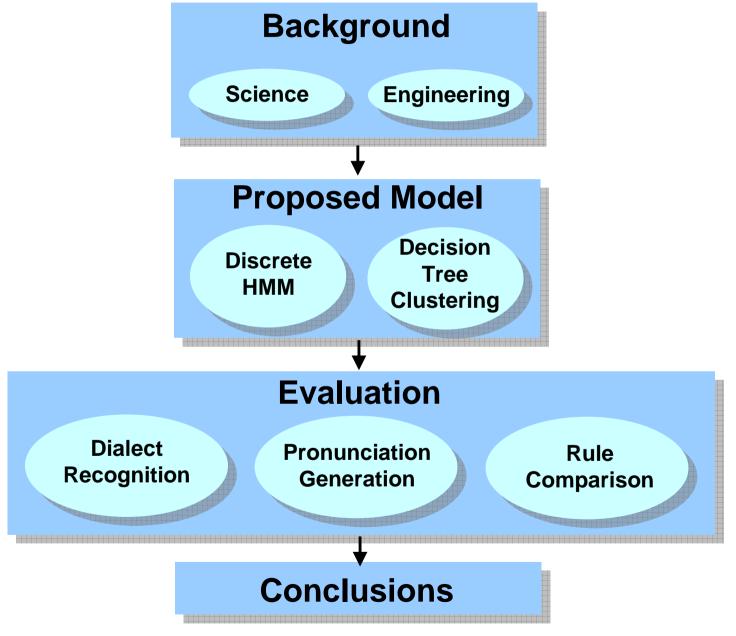
Informative Dialect Recognition using Context-Dependent Pronunciation Modeling*

Nancy Chen, Wade Shen, Joseph Campbell, Pedro Torres-Carrasquillo

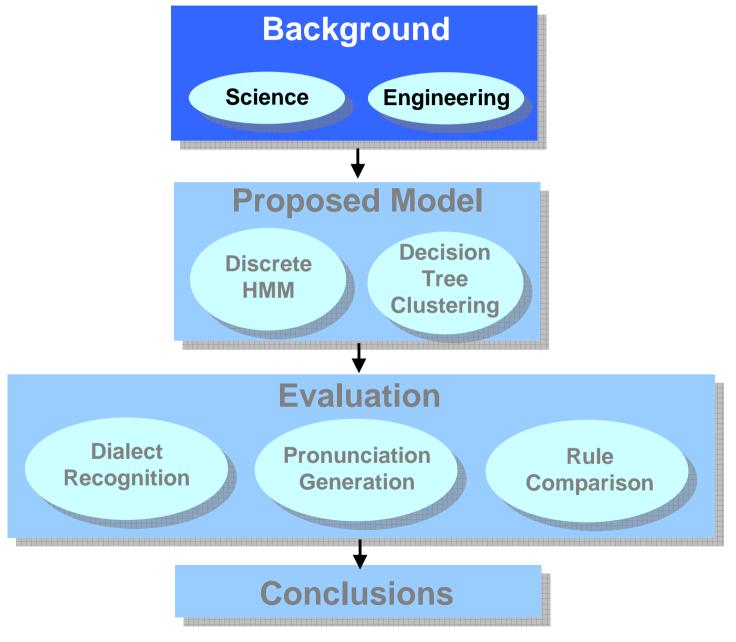
MIT/ Lincoln Laboratory
May 24, 2011

^{*}This work was sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Outline



Outline



Dialect Research

Speech Science

Sociolinguistics
Analyze phonetic rules manually

Dialect Research

Speech Science

Sociolinguistics
Analyze phonetic rules manually

Speech Technology

Automatic dialect recognition
Not explicitly learning rules

Bridges the Gap between Speech Science

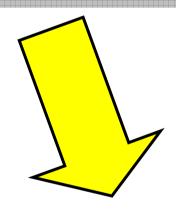
and Technology

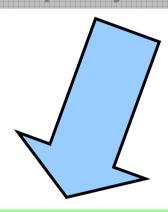
Speech Science

Sociolinguistics
Analyze phonetic rules manually

Speech Technology

Automatic dialect recognition
Not explicitly learning rules



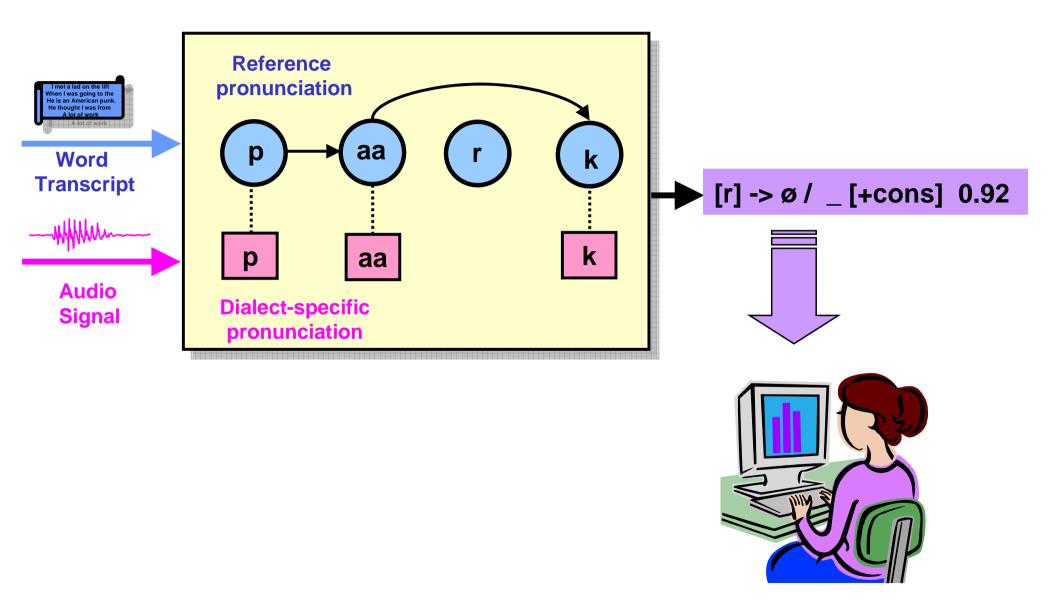


Our Work

Informative Dialect Recognition

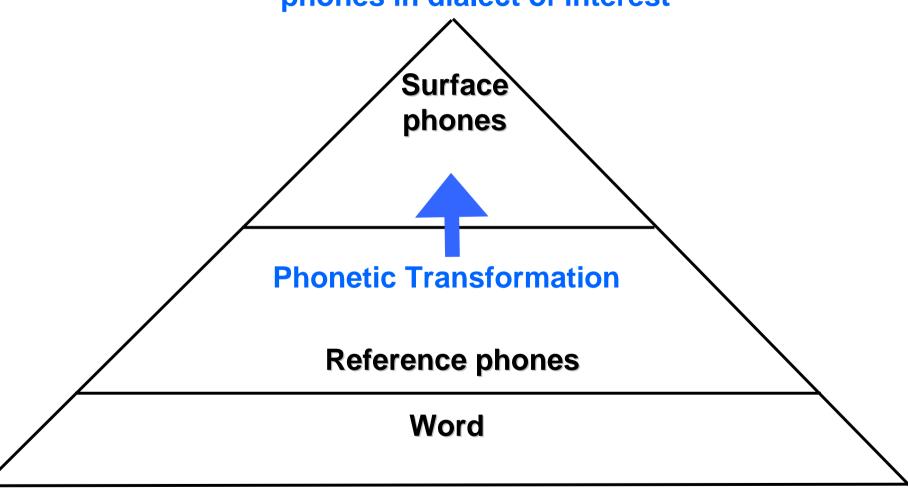
Automated system explicitly learns phonetic rules to inform human analyst

Informative Dialect Recognition



Phonetic Transformation

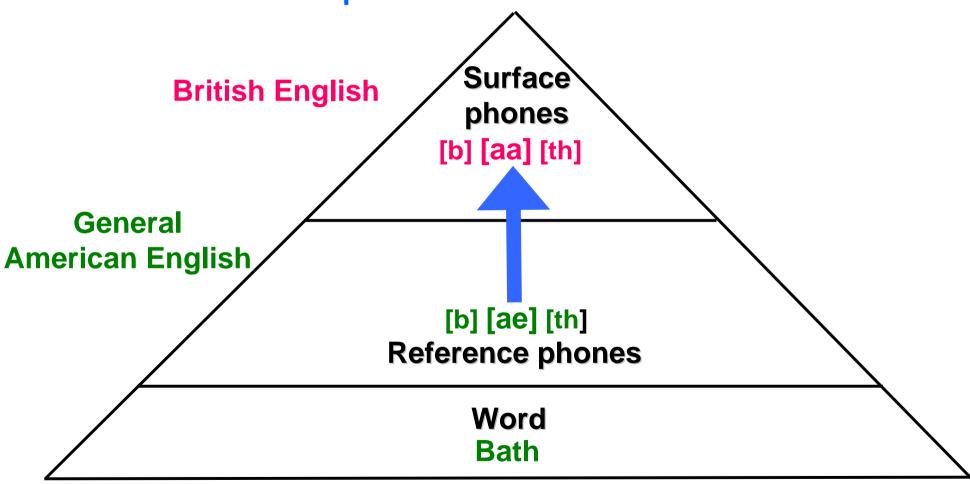
How phones in reference dialect is mapped to phones in dialect of interest



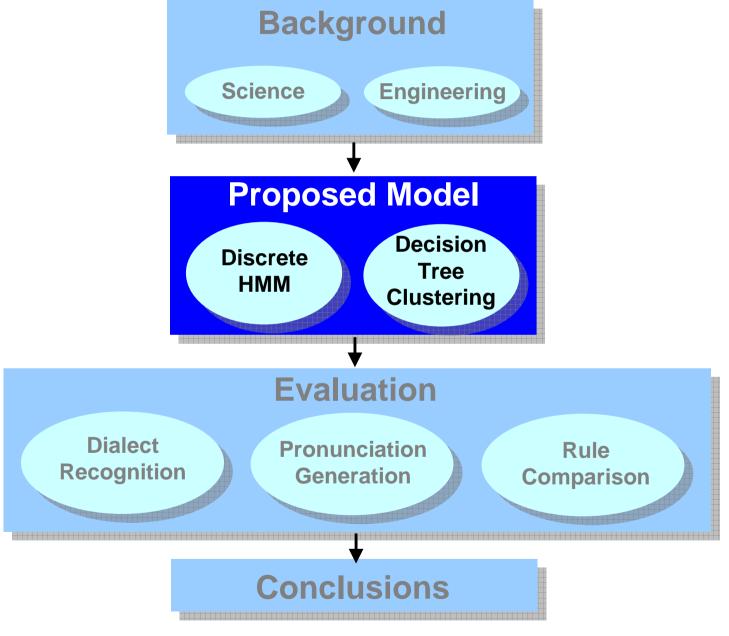
Phonetic Transformation

[ae] substitution

How phones in reference dialect is mapped to phones in dialect of interest



Outline



PPM: Phonetic Pronunciation Model Characterizing phonetic transformations

- When a dialect is compared to a reference dialect, what kinds of substitutions, insertions, deletions occur?
- Where do they occur?
- How often do they occur?

Discrete hidden Markov model
Align reference phones
with surface phones

Decision tree clustering Generalize phonetic rules

Phonetic Transformations

Substitution: Trap/bath split

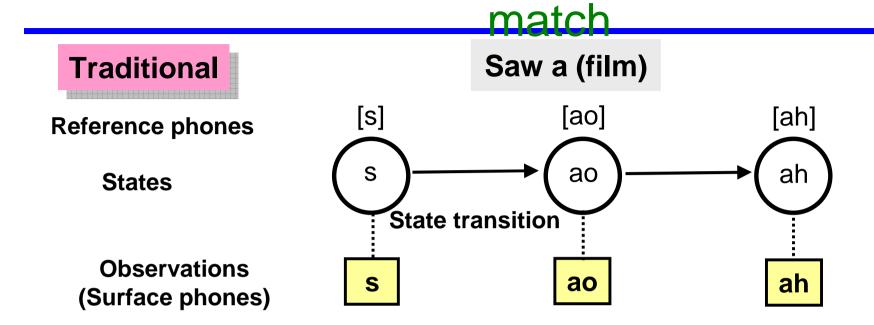
Word	bath	
Reference phones American	b ae th	
Surface phones British	b aa th	

Deletion: Non-rhoticity

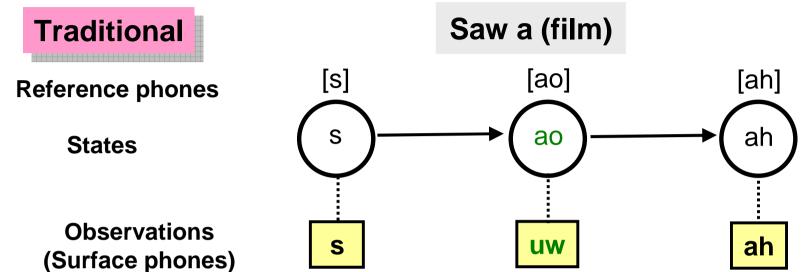
Word	park		
Reference phones American	p aa r k		
Surface phones British	p aa k		

Insertion: Intrusive r

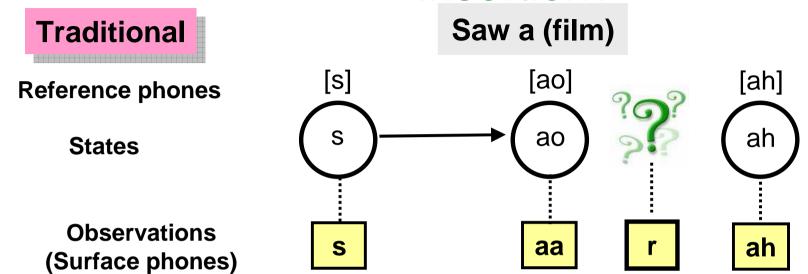
Word	saw a (film)		
Reference phones	s ao ah		
Surface phones British	s ao r ah		



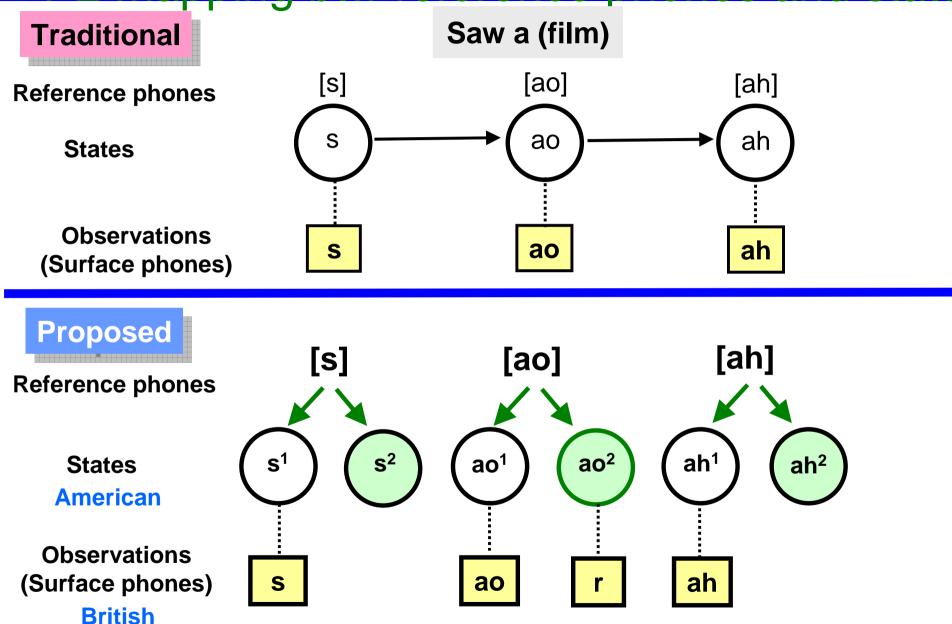
substitution



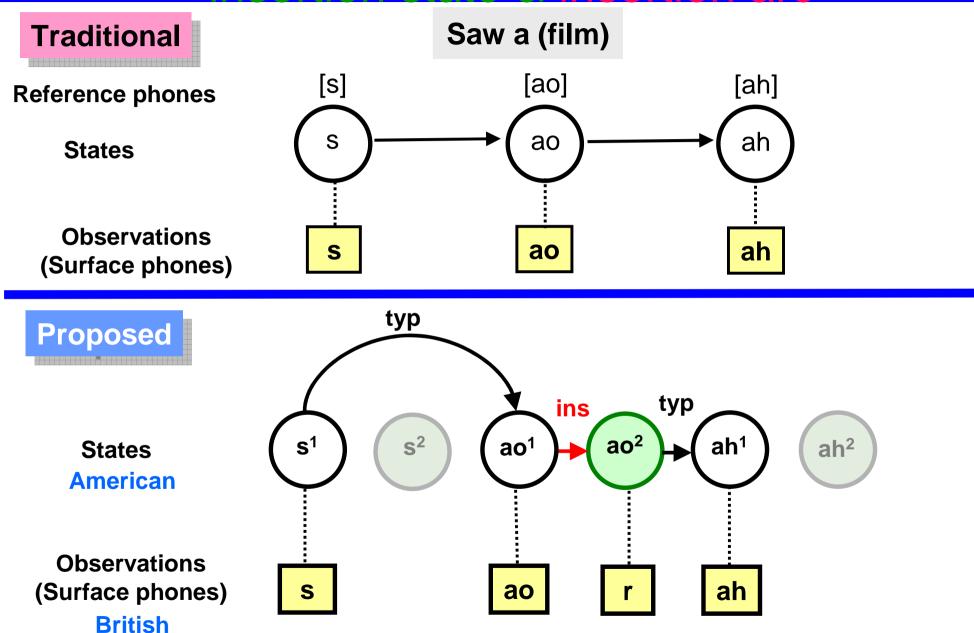
insertion?



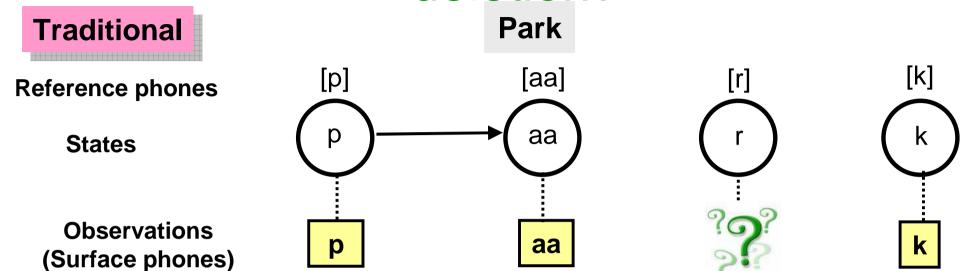
1-2 mapping btw reference phones and states

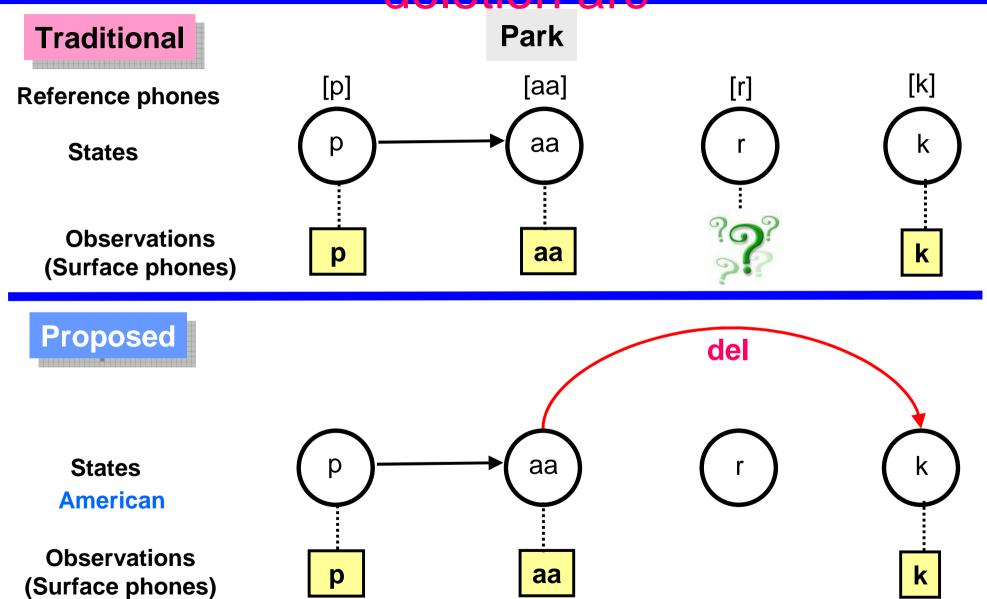


insertion state & insertion arc



deletion?

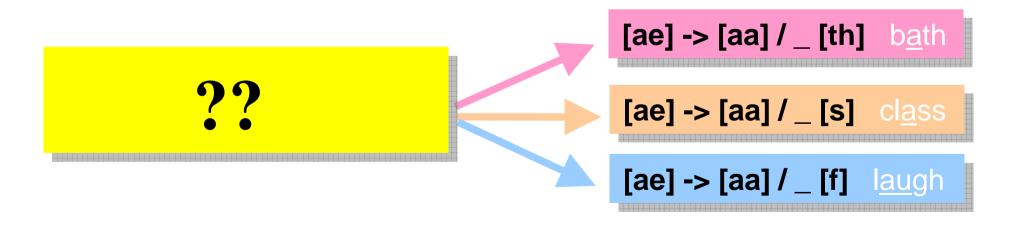




British

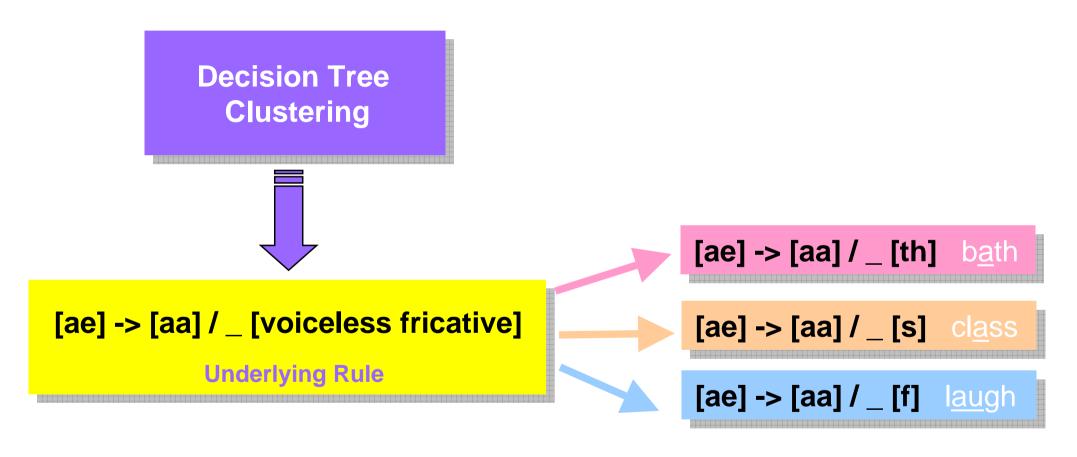
Generalizing Rules

What is the underlying rule of [ae] transforming to [aa]??

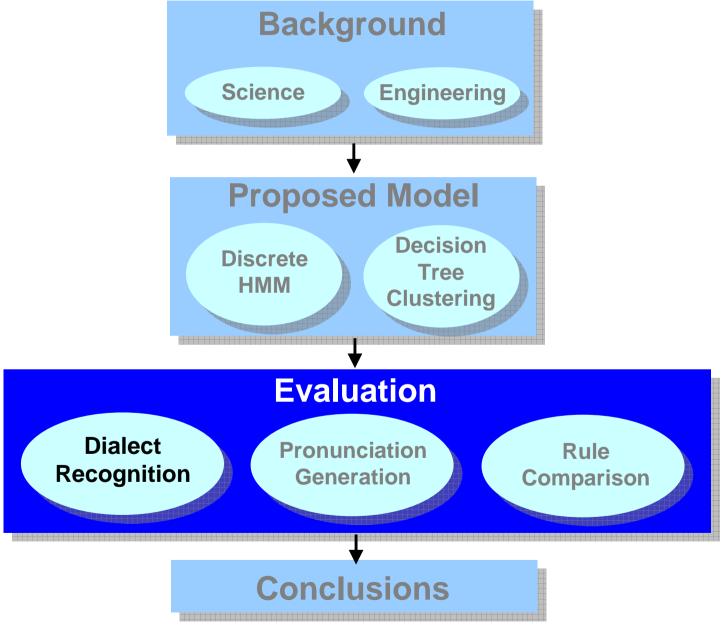


Generalizing Rules

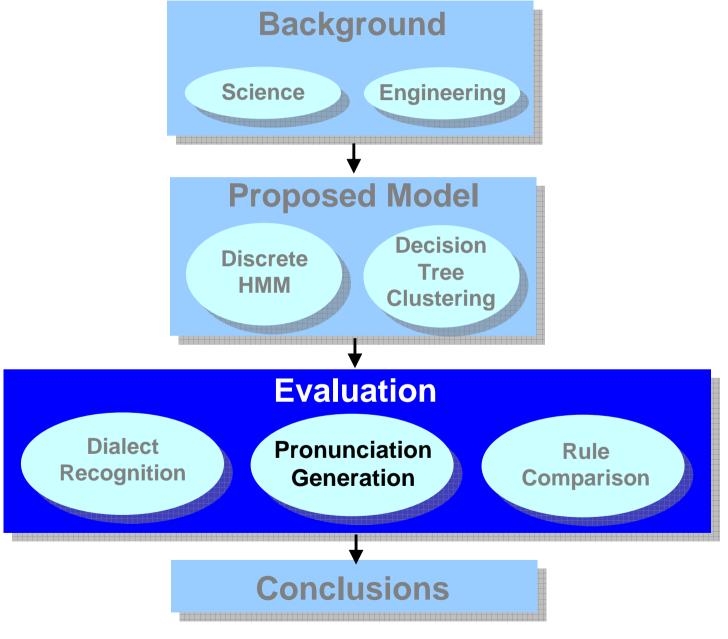
Underlying rule can be found using Decision-Tree Clustering



Outline



Outline



Corpus

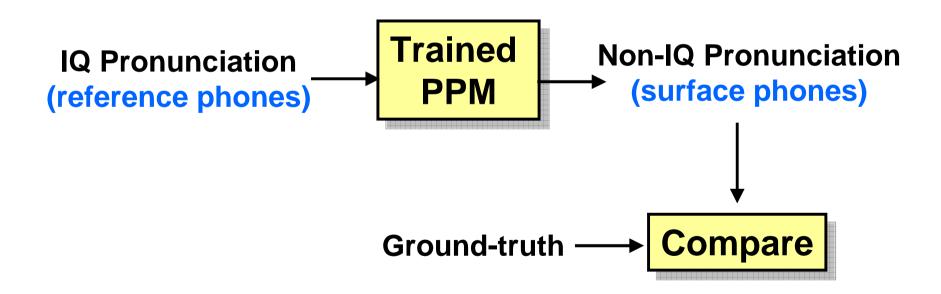
- 5 Arabic dialects regions
 - UAE (AE), Egypt (EG), Iraq (IQ), Palestine (PS), Syria (SY)
- Conversational telephone speech
- IQ: reference dialect

Data set	Speaker number	Duration	
Train	276	46.25 hr	
Dev	83	13.9 hr	
Test	88	14.75	

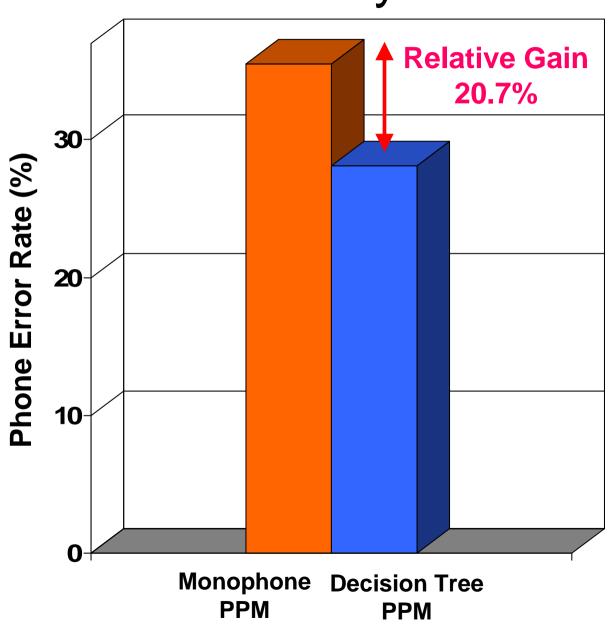
Generating Dialect-Specific Pronunciation

Assumption

 If trained model has learned rules correctly, then the model is able to convert IQ pronunciation to non-IQ pronunciation

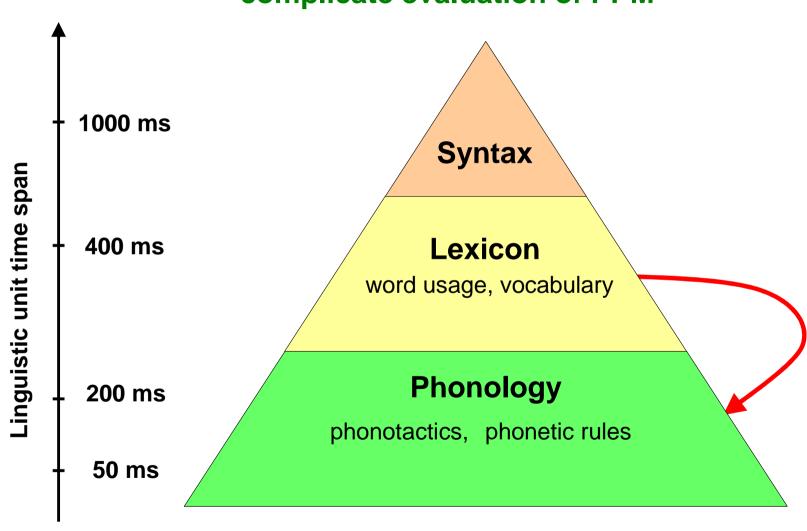


Proposed Model Improves Rule



Word-Usage Differences

Word usage differences across Arabic dialects complicate evaluation of PPM



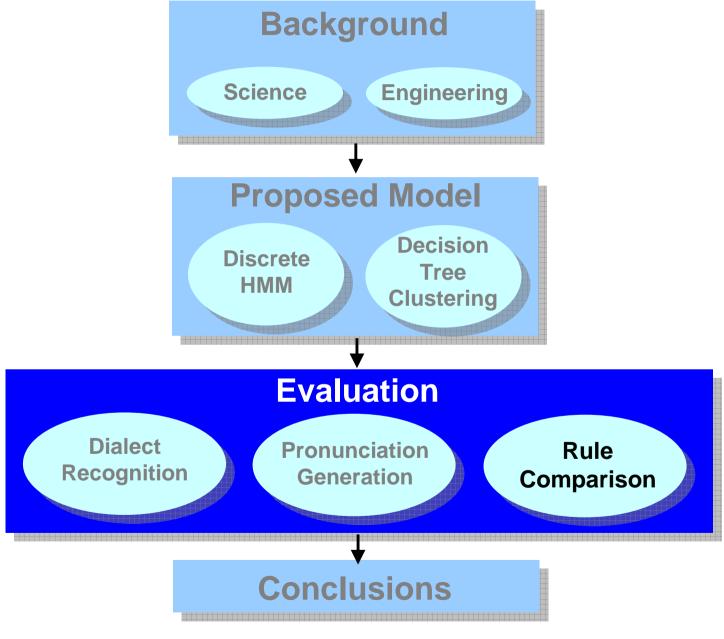
But...

Future Work Preview

 Phonetic Pronunciation Model (PPM) performs well on English corpora w/o word-usage differences

- Coming soon: Chen et. al, 2011 Interspeech
 - Extensions of PPM
 - Multiple English corpora

Outline



Examples of Learned Rules from PPM

PPM quantifies occurrence frequency of rules

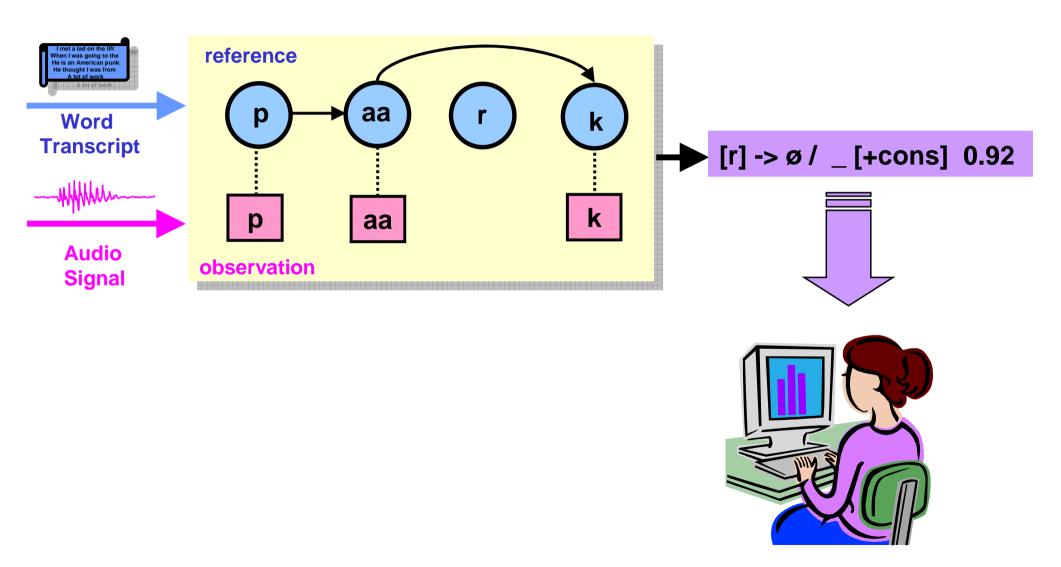
Literature		Proposed System		
Linguistic Description	Dialect	Learned Rule	Prob	Dialect
Palatal voiced affricate becomes palatal approximant	AE	[dZ] -> [j] /_ [+syl]	0.32	AE
Palatal voiced affricate becomes voiced stop	EG	[dZ] -> [d]	0.25	EG
Vowel [o] exists	Ŋ	[o:] -> [a]	0.28; 0.27; 0.32; 0.27	AE, EG, PS, SY
		[th] -> [t] /_ [-short]	0.60	EG
Interdental fricatives become stops	EG	[th] -> [t] / [-low] _ [+short]	0.59	EG
	PS	[th] -> [t]	0.42; 0.43	PS, SY
	SY	[dh] -> [d]	0.24; 0.29	PS, SY
		[dh] -> [d] / [-front] _	0.33	EG

Conclusions

- Informative Dialect Recognition: automatic yet informative approach in analyzing dialects
- Mathematical framework characterizes phonetic transformations across dialects in *explicit* manner

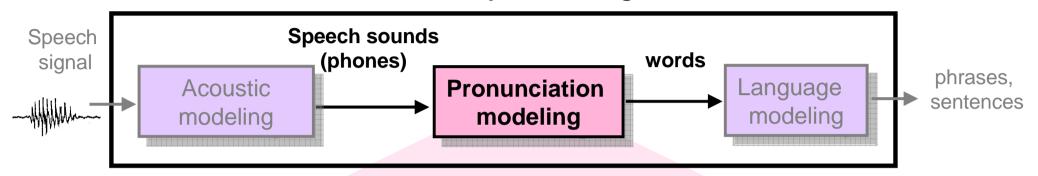
 Proposed system postulates rules from large corpora to discover, refine, and quantify rules

Informative Dialect Recognition

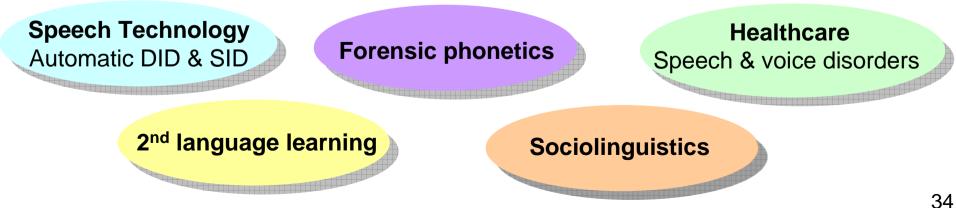


Informative Dialect Recognition Potential Applications

Automatic Speech Recognizer



Informative Dialect Recognition Generalize concept of pronunciation modeling to explicitly characterize pronunciation rules



Back up

Outline

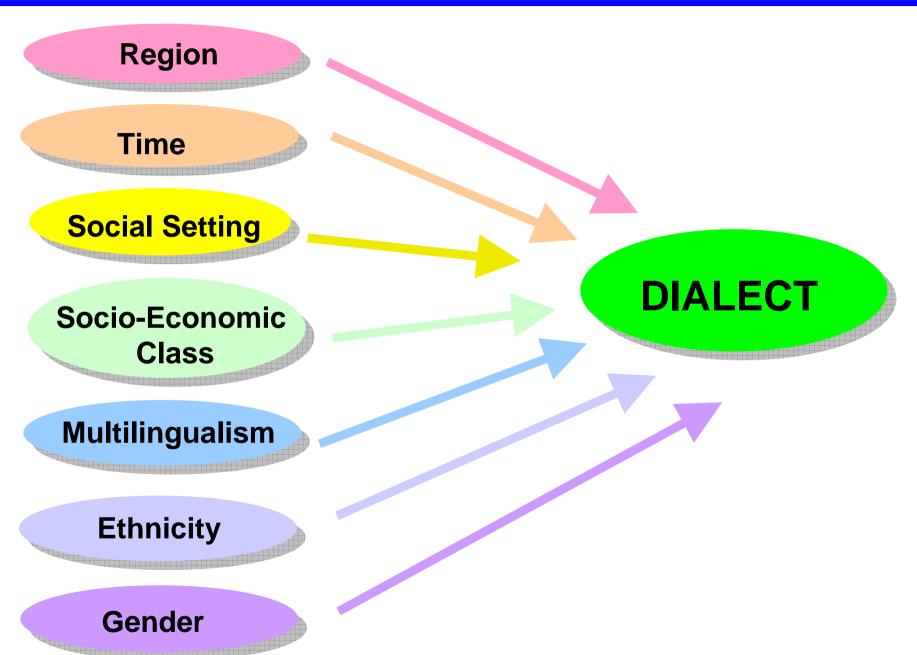
- Background
- Proposed Pronunciation Model
- Evaluation
 - Dialect Recognition
 - Generating Dialect-Specific Pronunciation
 - Rule Analysis: Interpretation and Quantification
- Conclusions

Background

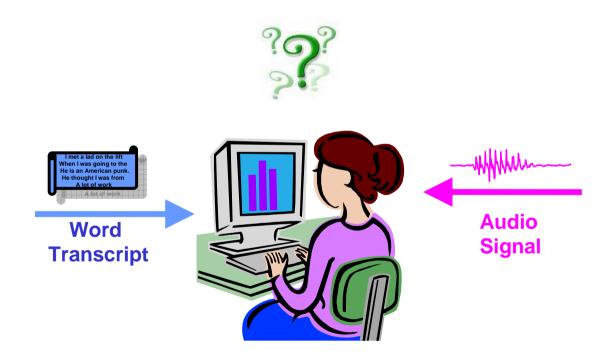
What Influences Dialects?

Region **Time Social Setting DIALECT Socio-Economic** Class Multilingualism **Ethnicity** Gender

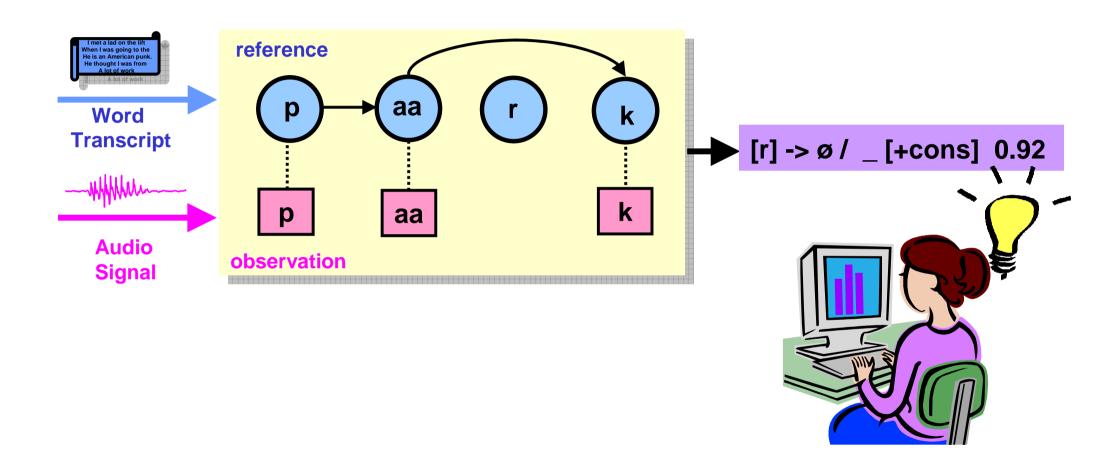
What Influences Dialects?



Traditional Analysis



Informative Dialect Recognition



Related Work

Our work generalizes ASR concepts to automatically learn rules

Primary Focus	Improve engineering performance	Automatically learn rules
	Automatic Dialect Recognition	Informative Dialect Recognition Chen et al (2010, 2011)
	Richardson & Campbell (2009)	
	Biadsy et al (2010)	3 (23.3, 23.1)

Related Work

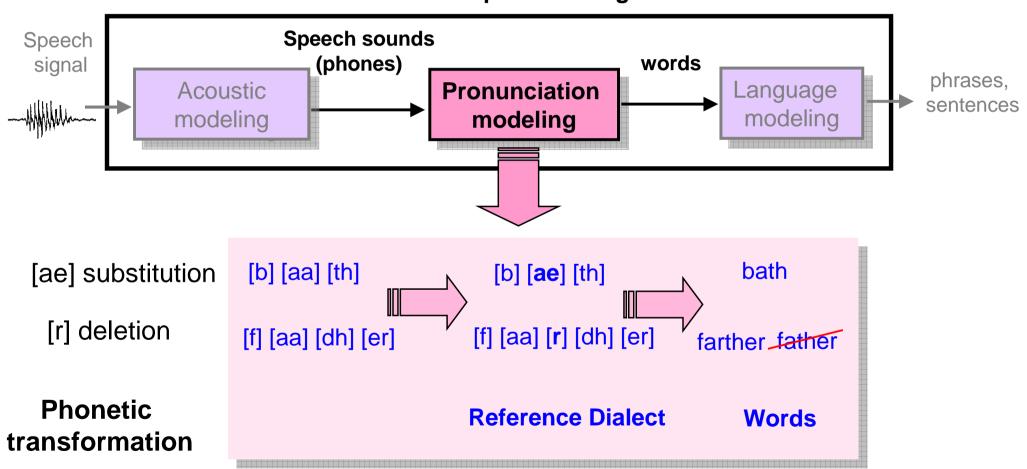
Our work generalizes ASR concepts to automatically learn rules

purpose method	Improve speech analysis efficiency	Automatically learn rules
Directly apply ASR tools	Sociolinguistics Evanini et al (2009) Yuan & Liberman (2009) Computer-aided language learning Kim et al (2004)	Automatic Speech Recognition Livescu & Glass (2000), Kim et al (2007)
Generalize ASR concepts	Informative Dialect Recognition Chen et al (2010, 2011)	Informative Dialect Recognition Chen et al (2010, 2011)

Applying Pronunciation Modeling to Dialect Analysis

Mapping between sound units and words

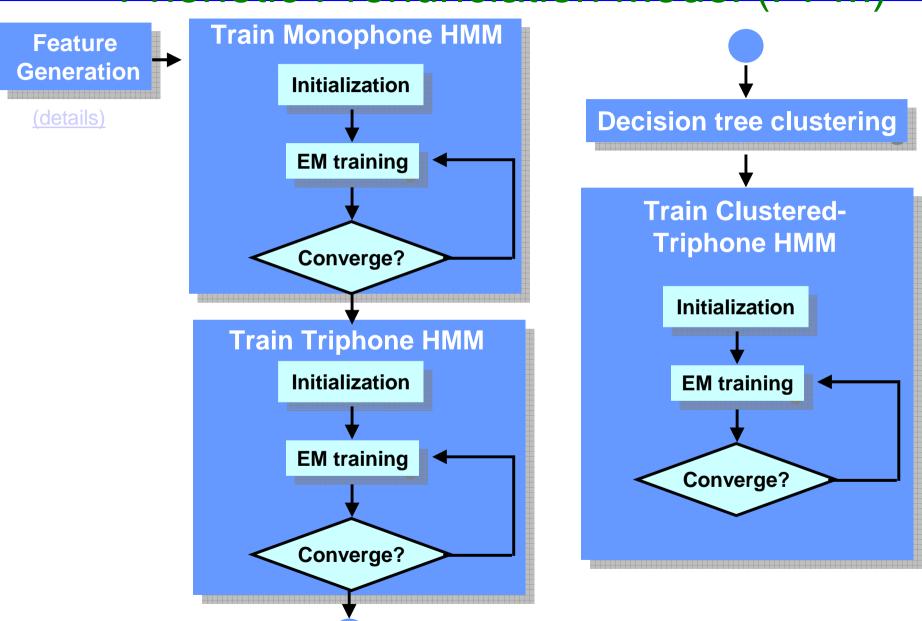
Automatic Speech Recognizer



Implementation Details

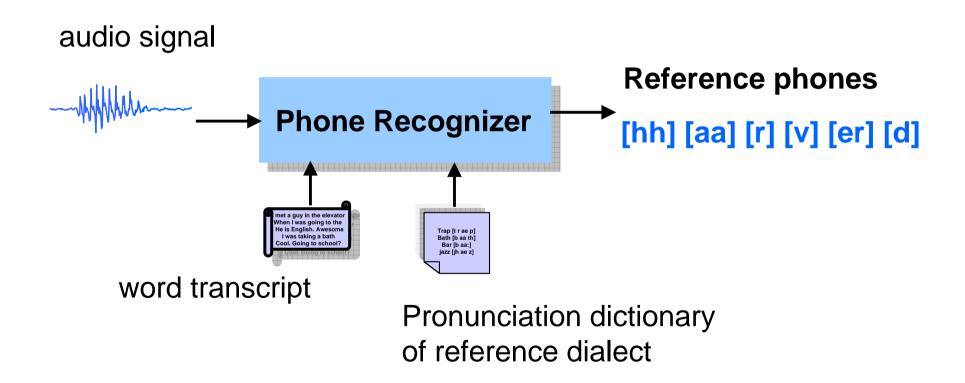
Training

Phonetic Pronunciation Model (PPM)



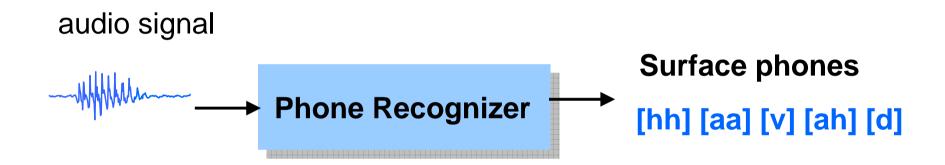
Feature Generation

Reference phones generated through force alignment



Feature Generation

Surface phones generated by phone recognition decoding



Current tying mechanism

State clustering

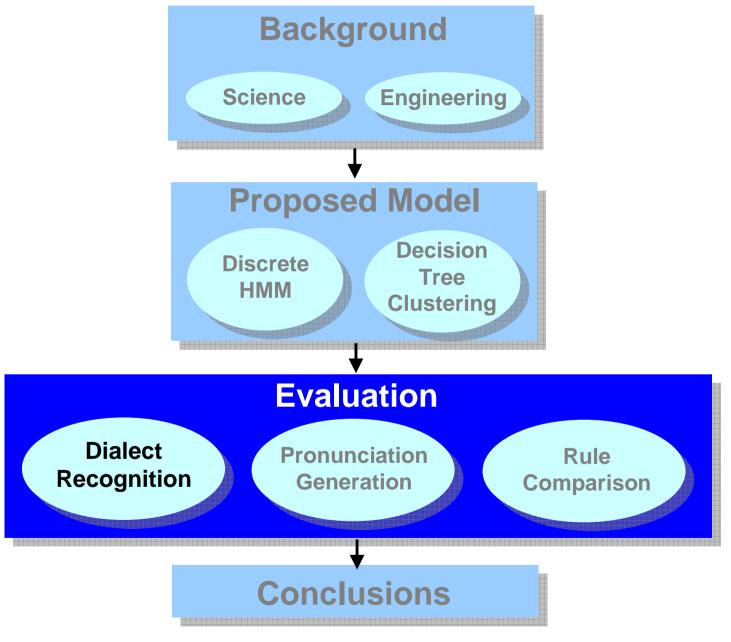
- Emissions of each state are used to train decision trees
- Arcs and emissions are shared if the triphone states are tied
- Transition arc constraints
 - Deletion & typical arcs are destination independent
 - Insertion arcs are destination dependent by definition
 - Consecutive deletion not allowed, while consecutive insertions are allowed

Assumptions

- The phone before the deleted phone goes through phonetic transformation
 - Example: /park/ -> [p a: k]
- The phone after the deleted phone does not characterize the deletion

Dialect Recognition

Outline



Experimental Setup

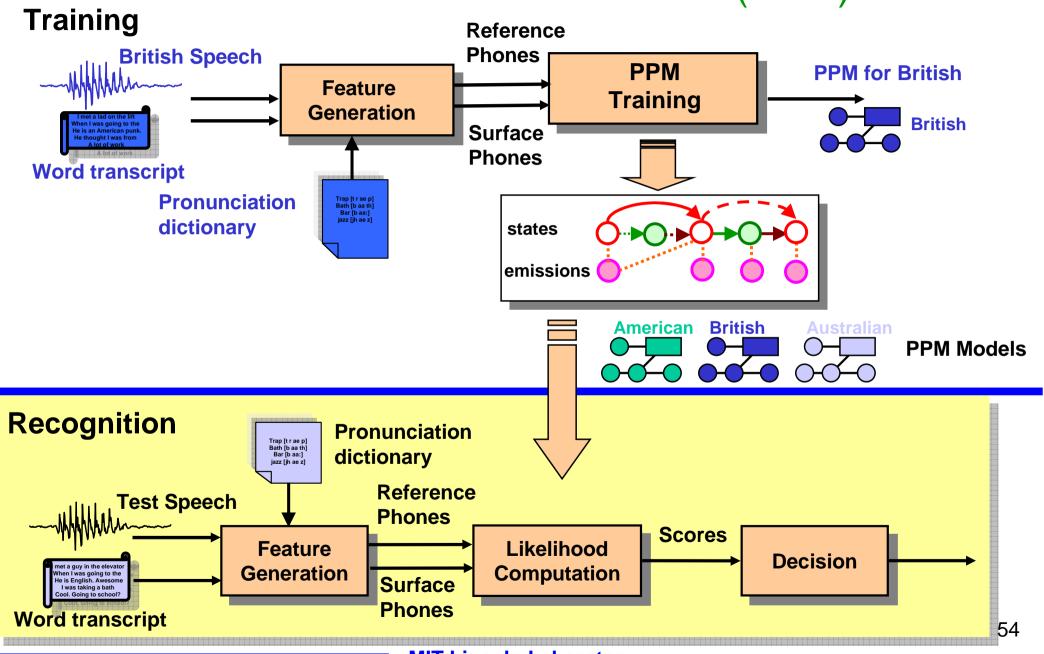
- Assumption
 - If model learned rules well, it can do dialect recognition
- 5 dialects regions
 - UAE (AE), Egypt (EG), Iraq (IQ), Palestine (PS), Syria (SY)
 - Conversational telephone speech
- IQ: reference dialect

Data set	Speaker number	Duration
Train	276	46.25 hr
Dev	83	13.9 hr
Test	88	14.75

5 Dialect Regions

Dialect Recognition System

Phonetic Pronunciation Model (PPM)

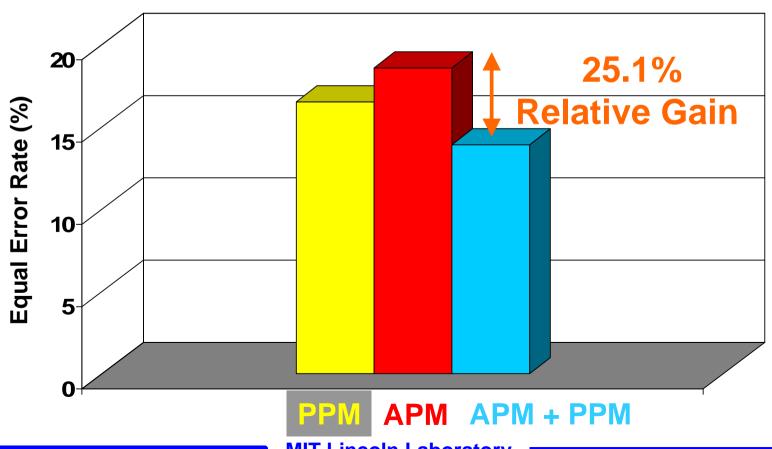


PPM Fuses Well with APM

- APM: Acoustic Phonetic Model (Shen et al, 08)
 - Acoustic, monophone counterpart of PPM
 - Each phone is a GMM
 - Phonetic categorizations determined by forced-alignment

PPM Fuses Well with APM

- APM: Acoustic Phonetic Model (Shen et al, 08)
 - Acoustic, monophone counterpart of PPM
 - Each phone is a GMM
 - Phonetic categorizations determined by forced-alignment



Dialect Recognition Experiment

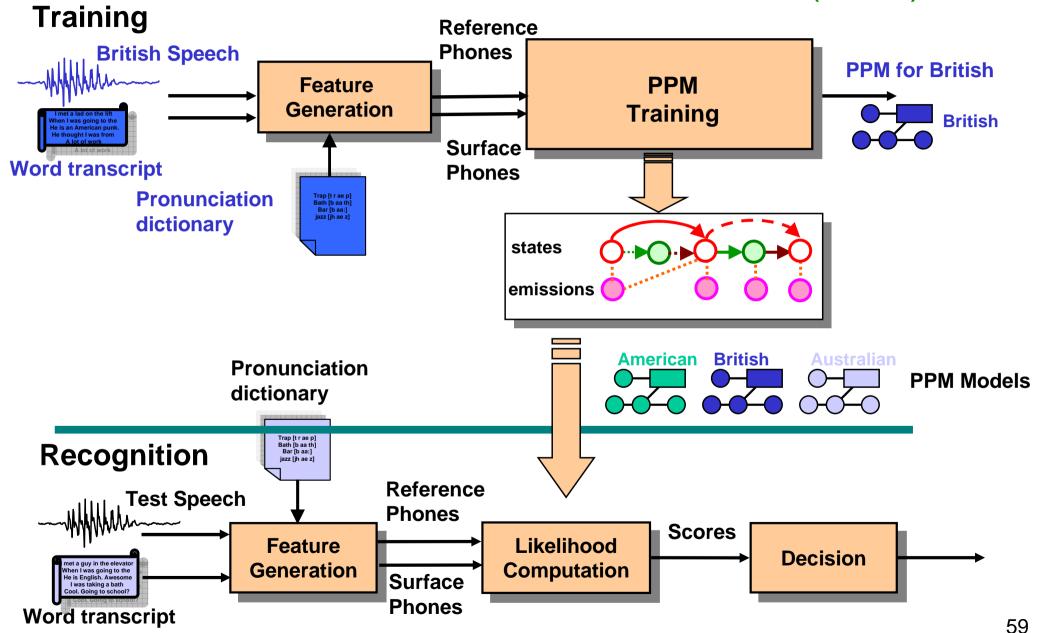
- Proposed System: Phone-based Pronunciation Model
 - PPM-1:
 - Surface phones obtained through force-alignment using pan-Arabic pronunciation dictionary
 - PPM-2:
 - Surface phones obtained through direct decoding using an Iraqi phone recognizer

Dialect Recognition Experiment

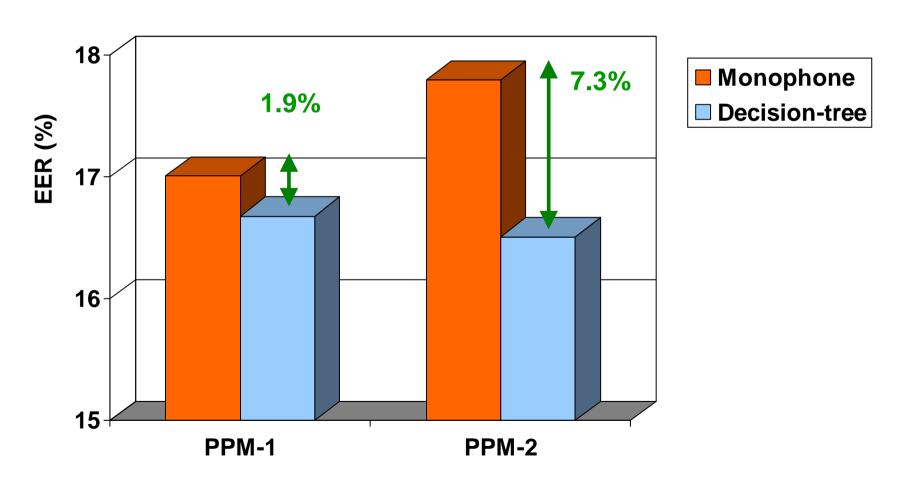
- Proposed System
 - Phone-based Pronunciation Model (PPM)
 - Reference phones:
 - forced-alignment using word transcripts & Iraqi pronunciation dictionary
 - Surface phones:
 - direct decoding using Iraqi phone recognizer
- Baseline System
 - Acoustic Phonetic Model (APM)
 - Each phone is a GMM
 - Phonetic categorizations determined by forced-alignment

Proposed Approach

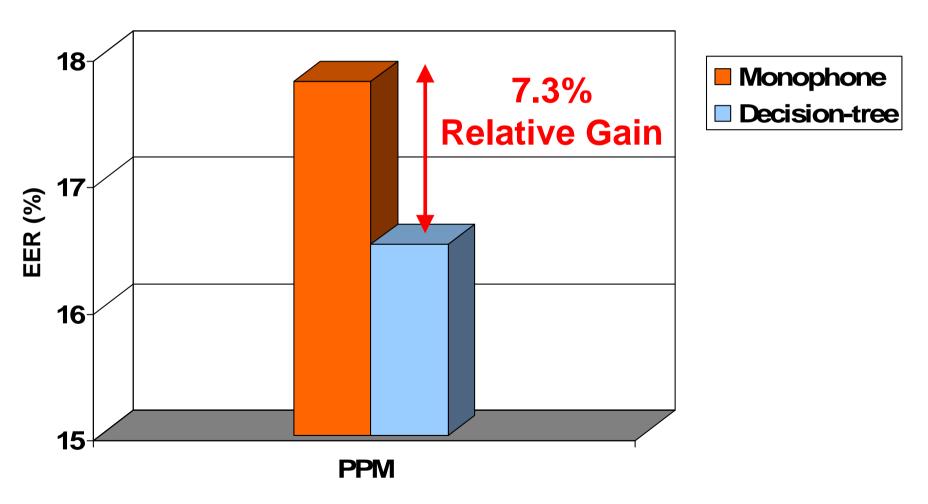
Phonetic-based Pronunciation Model (PPM)



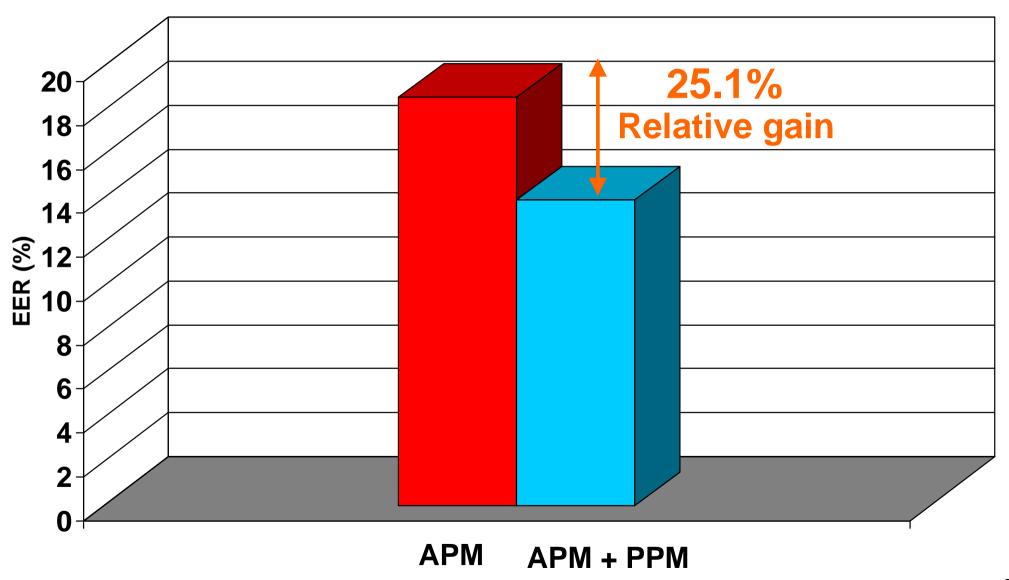
- Phonetic context improves dialect recognition performance
- Performance: Decision Tree PPM-2 > Decision Tree PPM-1



Phonetic Context Helps Characterize Dialects

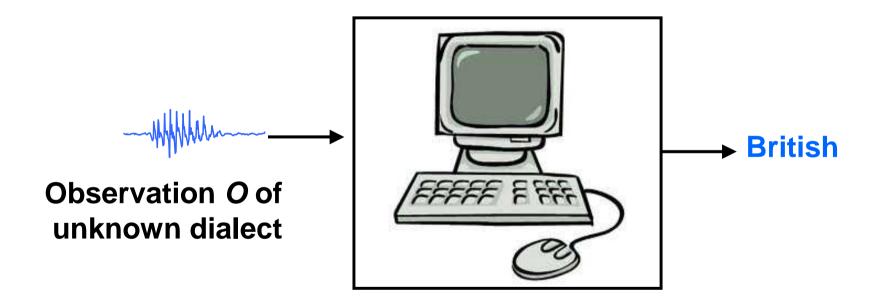


PPM fuses well with APM



Automatically Identifying Dialects

- Dialect recognition is an identification task
- Likelihood ratio is used to make decisions

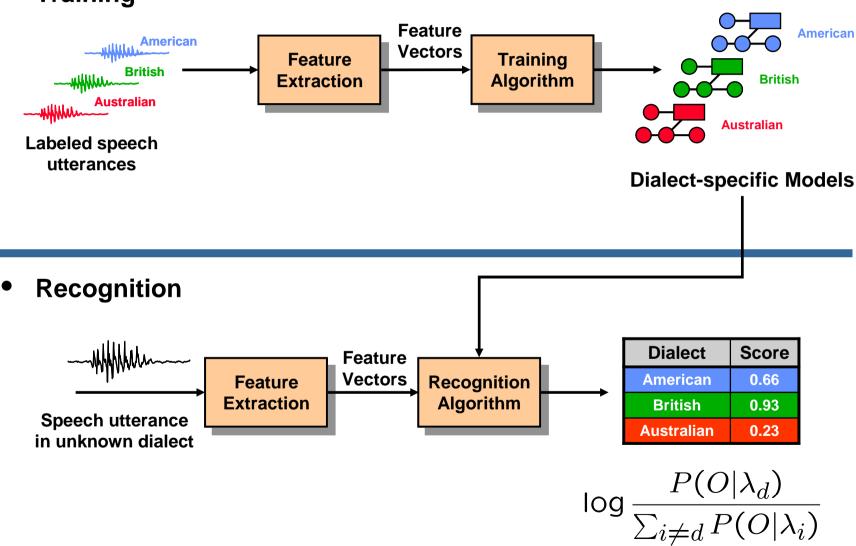


$$\log \frac{P(O|\lambda_d)}{\sum_{i \neq d} P(O|\lambda_i)}$$

Automatic Dialect Identification

System Architecture

Training

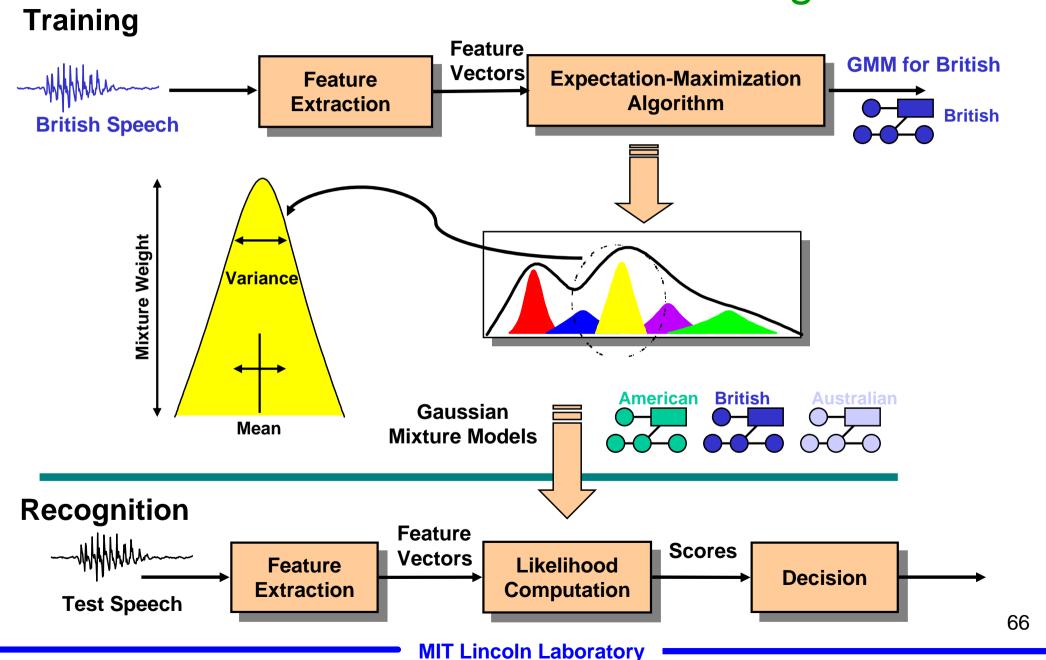


Dialect Recognition Experiment (4 dialects)

- IQ: reference dialect
- Baseline Systems
 - APM-1: adapted phonetic model (Shen et al, 08)
 - Acoustic segmentation determined by phone recognition
 - APM-2:
 - acoustic segmentation determined through force-alignment with word transcripts
 - SDC-GMM: shifted-delta-cepstra Gaussian mixture model (Torres-Carrasquillo et al, 2004)
 - PRLM: phone recognition followed by language modeling (Zissman et al, 1996)

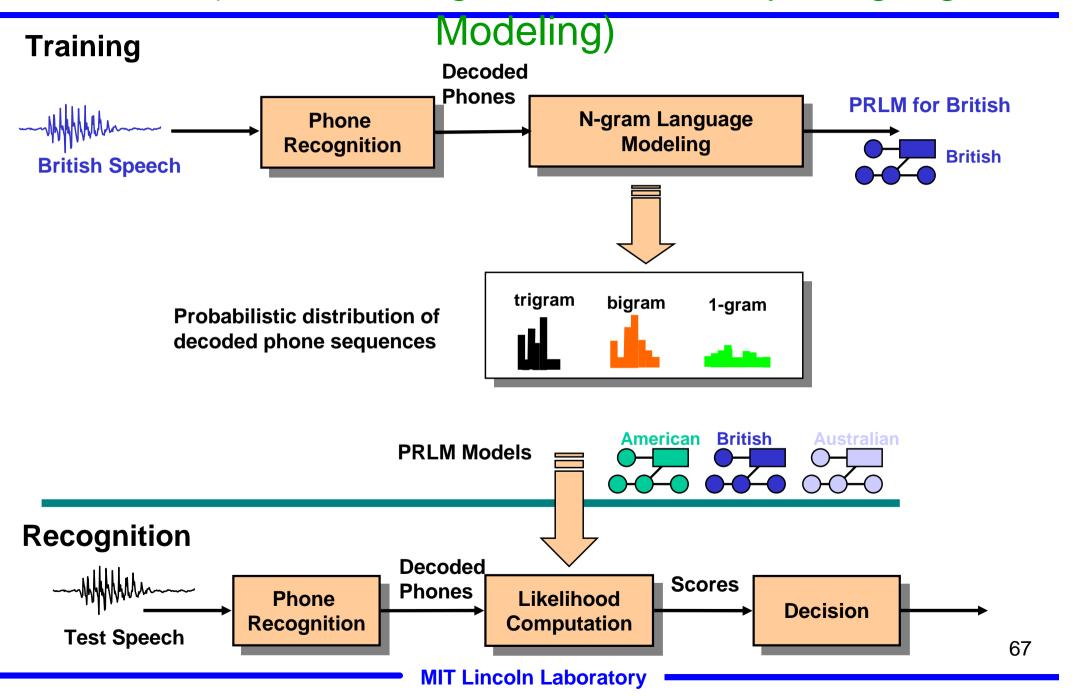
Existing Approach

Gaussian Mixture Modeling



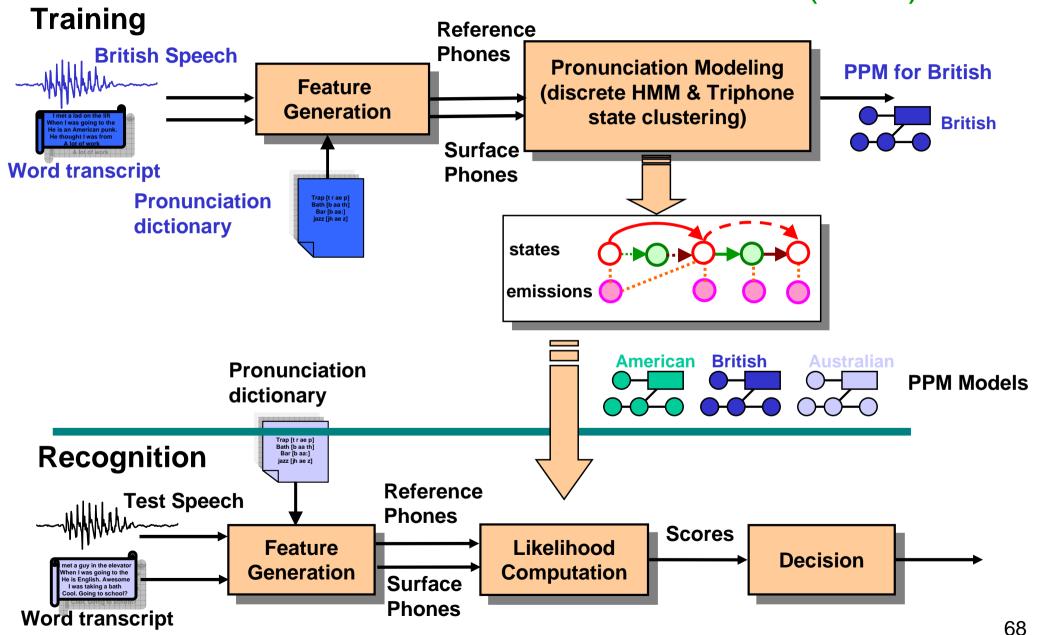
Laisting Approach

PRLM (Phone Recognition followed by Language



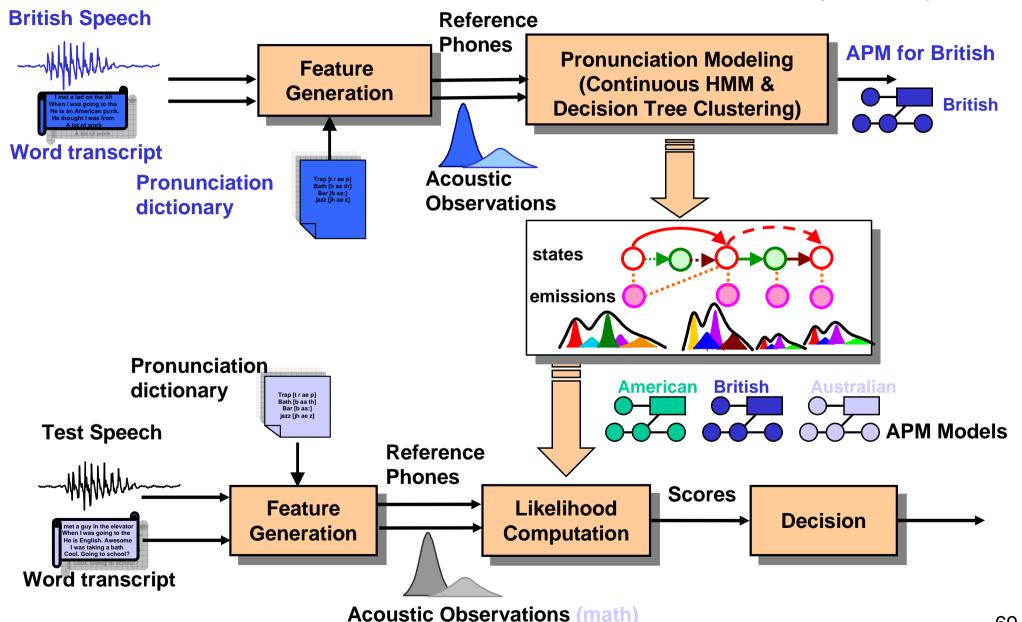
Proposed Approach

Phonetic-based Pronunciation Model (PPM)



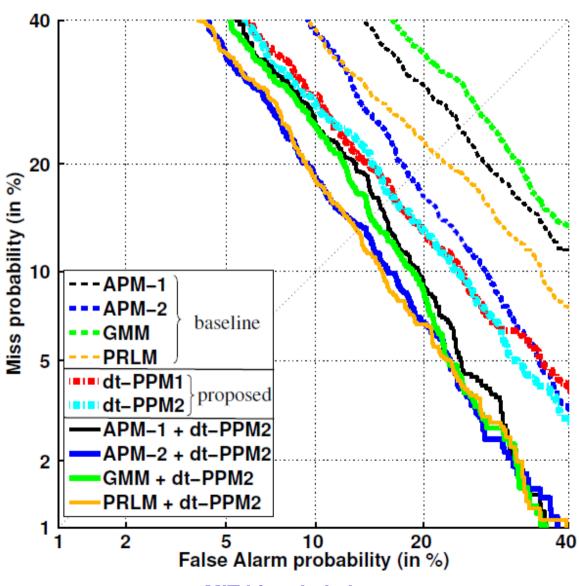
Proposed Approach

Acoustic-base Pronunciation Model (APM)



Detection Error Trade-off

Error rate: fused systems < Proposed PPM < baselines



Dialect Recognition Summary

PPM: Decistion Tree outperforms Monophone

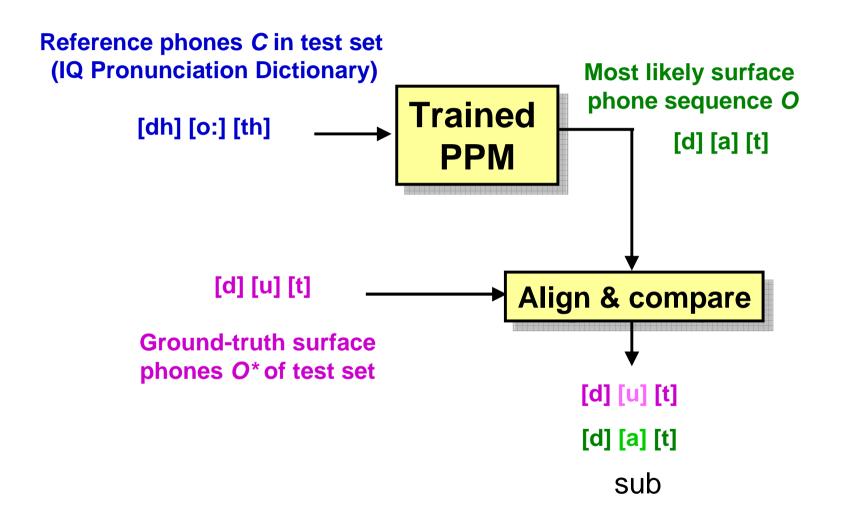
- DT PPM-2 outperforms DT PPM-1
 - PPM-2: Learned rules not limited to pronunciation dictionary
- DT PPMs fuse well with baseline systems

Pronunciation Generation Experiment

Assumptions

- All pronunciation variations across dialects are governed by underlying phonetic rules
- 2. The phonetic transcriptions provided by WSJ-CAM0 are ground-truth surface phones O^*
- 3. Ability to predict ground-truth surface phones O^* from the trained pronunciation model given the reference phones indicates how well the phonetic rules are learned from the pronunciation model algorithms

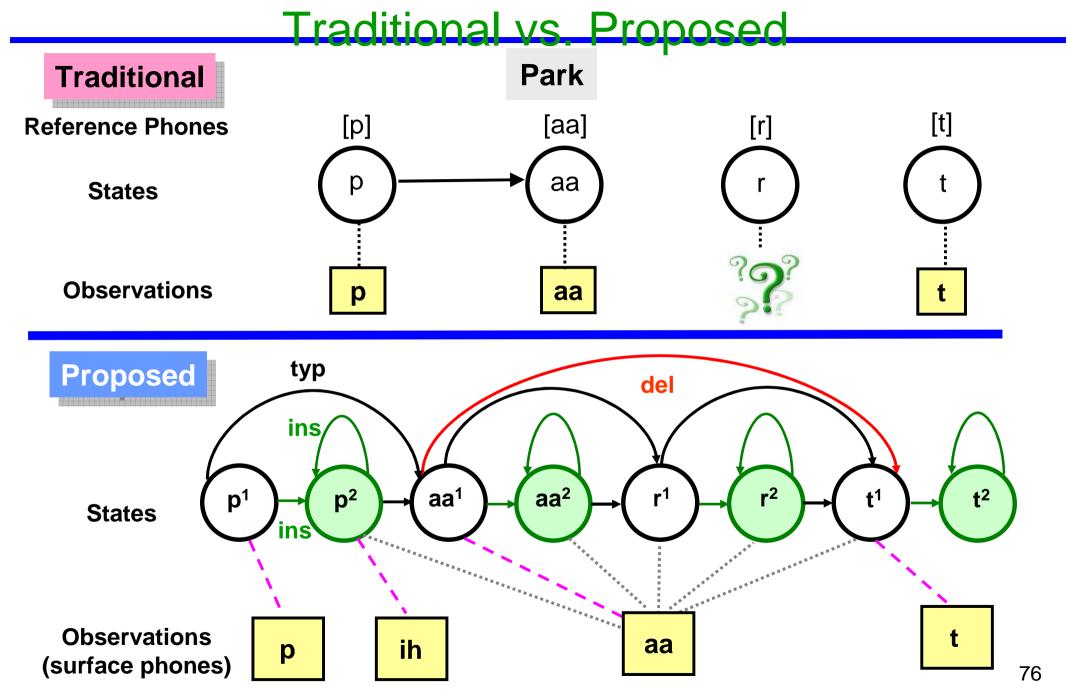
Experimental Setup



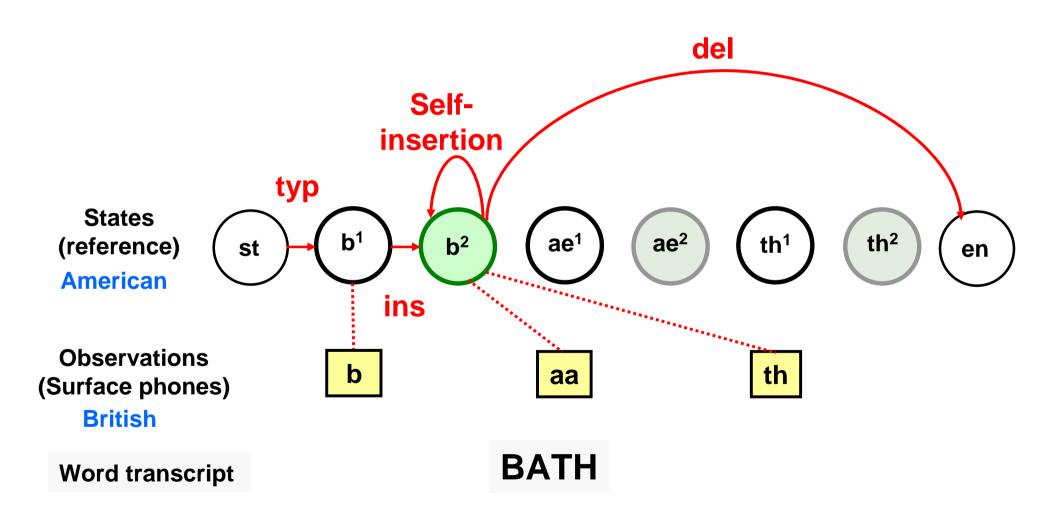
Phone error rate (PER): 33%

HMM

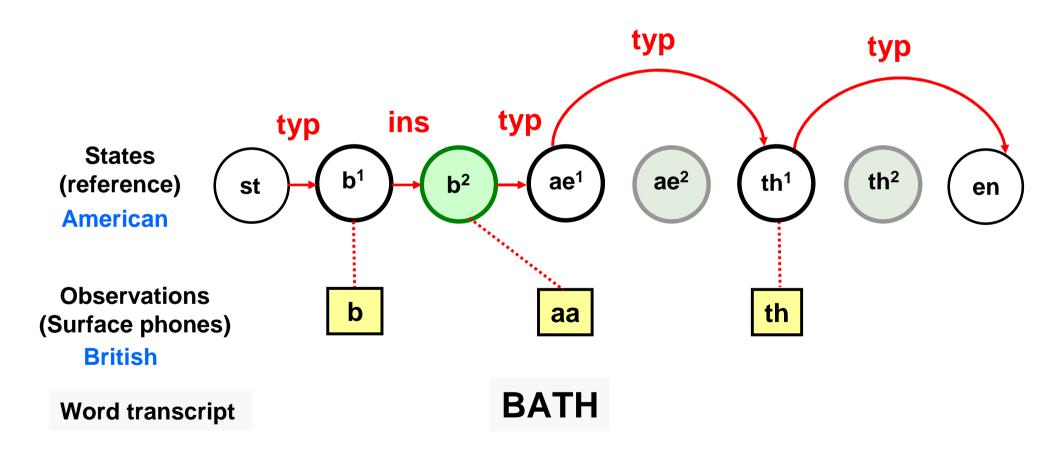
Hidden Markov Model (HMM)



Alignment Example 1

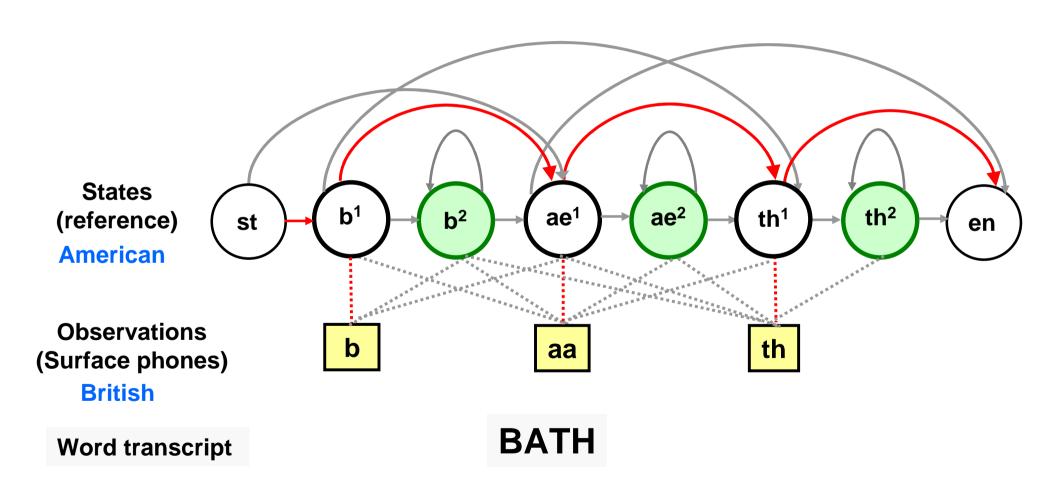


Alignment Example 2



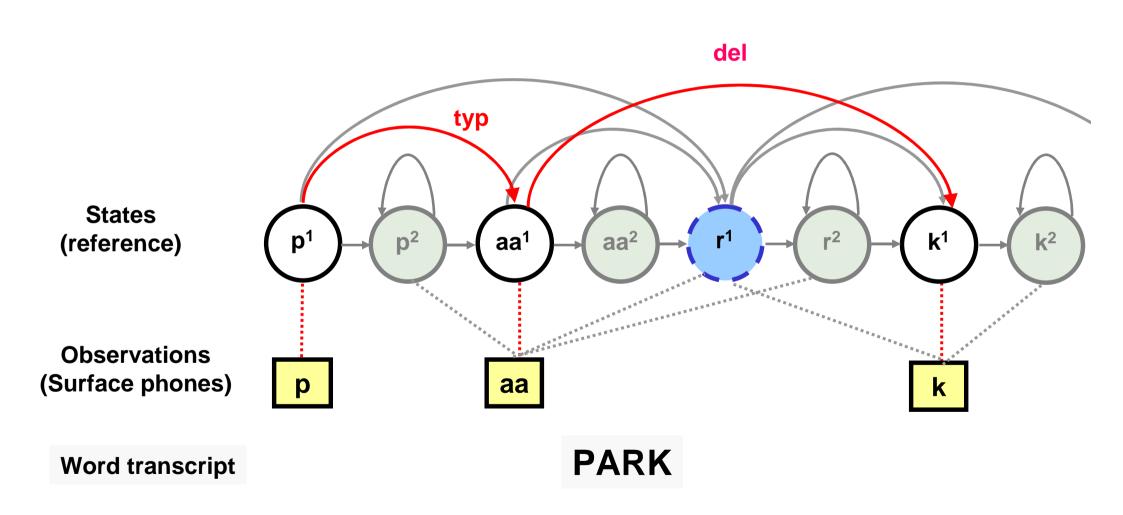
Alignment Example 3 /ae/ substitution rule

All possible alignments, given the states and observations



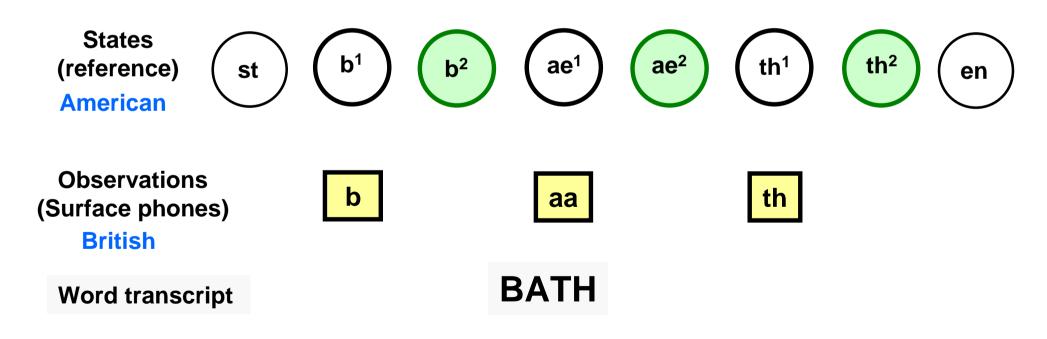
Non-Rhoticity Rule

The most likely alignment for the word park



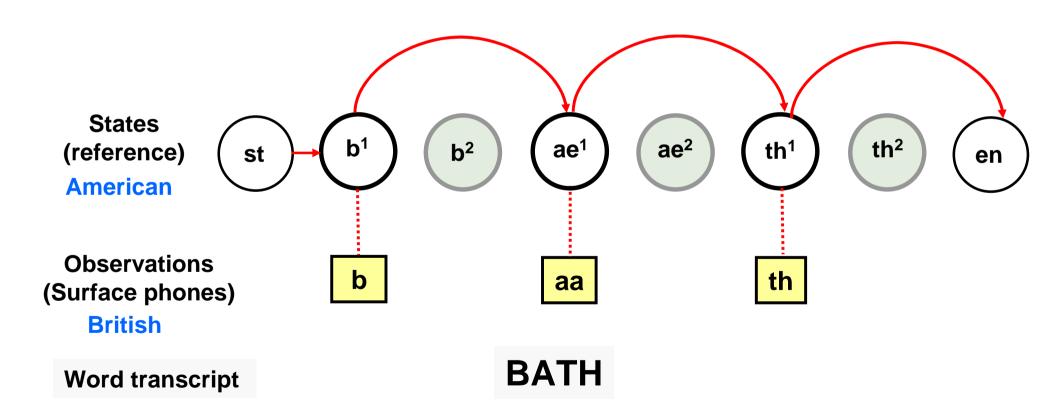
Alignment Example 1

Given the reference phones and surface phones, what are the possible alignments?



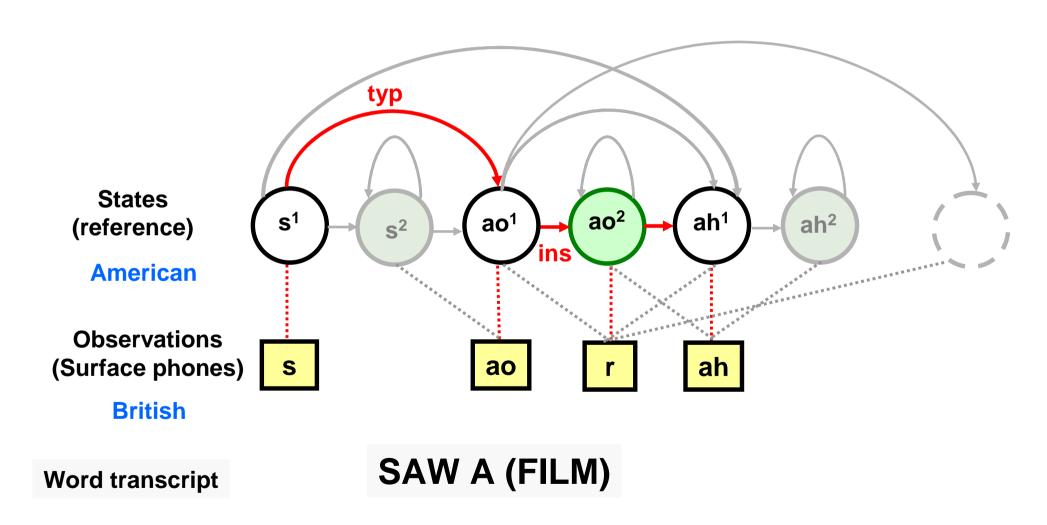
Alignment Example 1 /ae/ substitution rule

We expect the most likely alignment to be something like this.



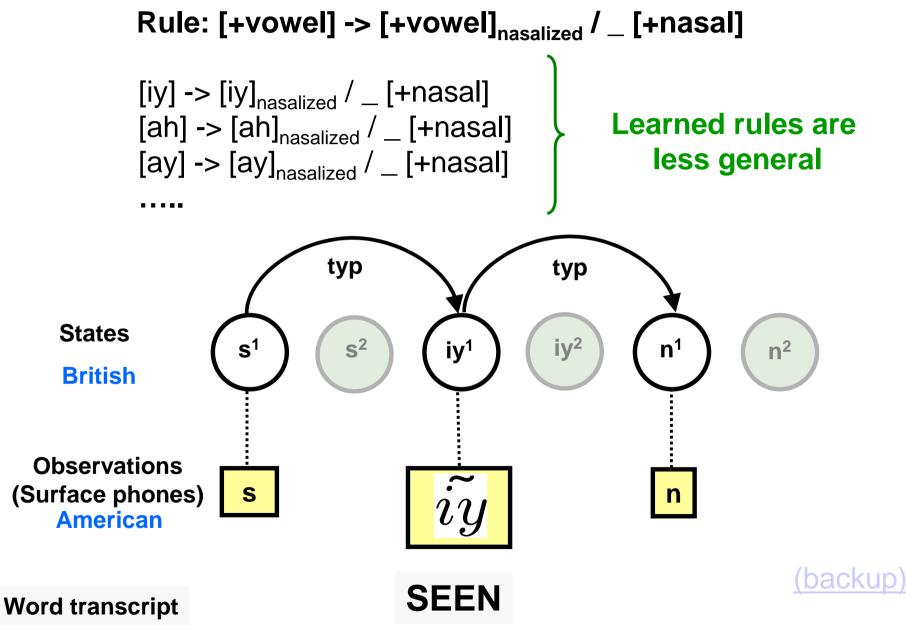
Intrusive r example

The most likely alignment for the phrase saw a film



Limitations in Learning Sub & Ins Rules

Cannot fully model right-context driven rules

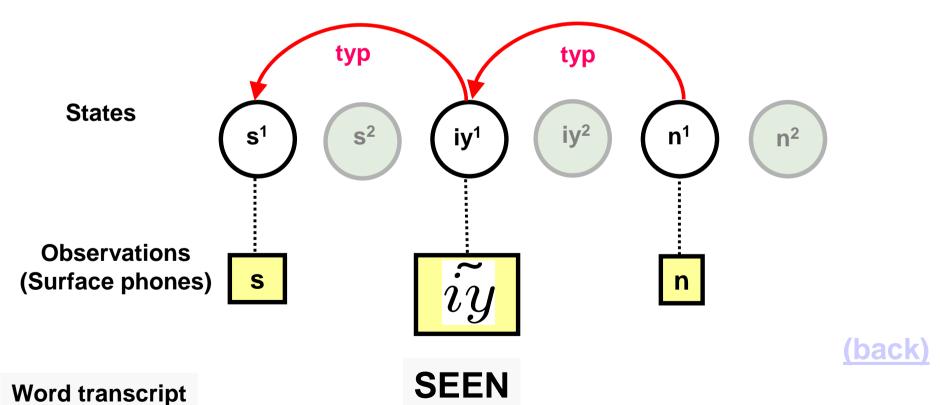


Modeling Rules Driven by Right-Context

Rule: [+vowel] -> [+vowel]_{nasalized} / _ [+nasal]

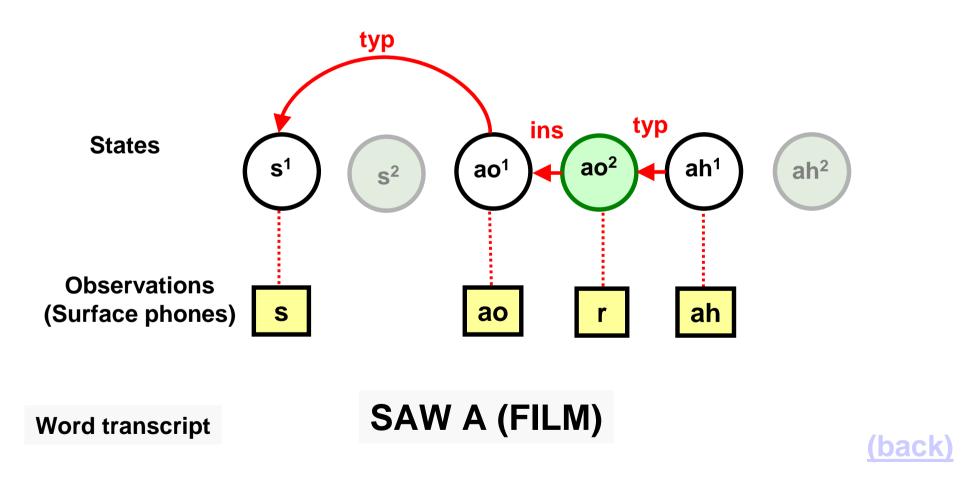
Learned Rule: [+vowel] -> [+vowel]_{nasalized} / _ [+nasal]

Reverse source and target!

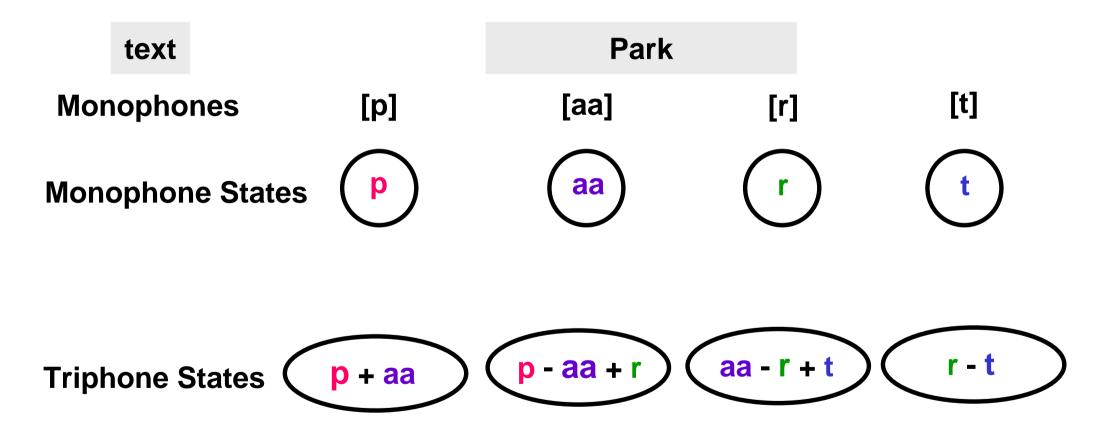


Modeling Rules Driven by Right-Context

Reverse source and target!



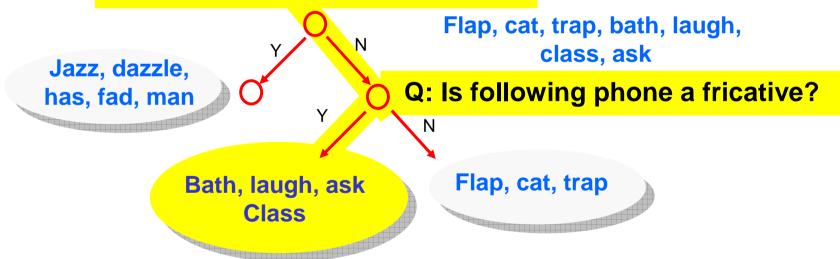
Monophone vs. Triphone



Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, man, cat, class, flap, trap, ask

Q: Is following phone voiced?



back

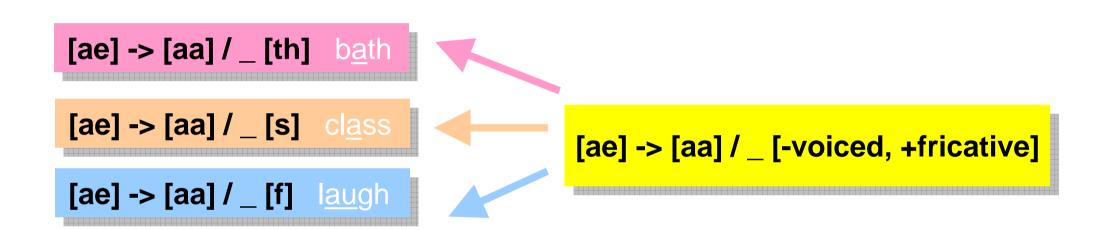
Learned Rule: [ae] -> [aa] / _ [-voiced, +fricative] -> triphone states (* - ae + [-voiced, +fricative]) are clustered

Generalizing Rules

What is the underlying rule of [ae] transforming to [aa]??

Generalizing Rules

What is the underlying rule of [ae] transforming to [aa]??



Rule Learning

- Phonetic transformation
 - Bath, class, laugh

- What is needed

 1. A list of questions
 (linguistic characterization)
 - Is following phone voiced?
 - Is previous phone voiced?
 - Is following phone a stop?
 - Is following phone a fricative?
 - Is previous phone a nasal?
 -

- 2. An objective splitting criteria
- 3. A threshold to stop splitting

Rule Learning

Find a set of features that best describe how [ae] is realized in British English

Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Q: Is following phone voiced?

Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Q: Is following phone voiced?

Jazz, dazzle, has, fad, man

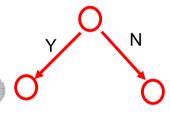
Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Q: Is following phone voiced?

Jazz, dazzle, has, fad, man



Flap, cat, trap, bath, laugh, class, math, hassle, ask

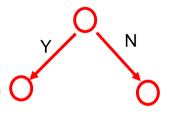
Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Q: Is following phone voiced?

Jazz, dazzle, has, fad, man



Flap, cat, trap, bath, laugh, class, math, hassle, ask

Q: Is following phone a fricative?

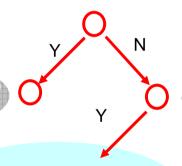
Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Q: Is following phone voiced?

Jazz, dazzle, has, fad, man



Bath, laugh, ask Class, math, hassle

Flap, cat, trap, bath, laugh, class, math, hassle, ask

Q: Is following phone a fricative?

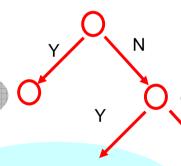
Rule Learning

Find a set of features that best describe how [ae] is realized in British English

bath, jazz, laugh, dazzle, has, fad, Man, cat, class, flap, trap, math, hassle, ask

Q: Is following phone voiced?

Jazz, dazzle, has, fad, man



Flap, cat, trap, bath, laugh, class, math, hassle, ask

Q: Is following phone a fricative?

Bath, laugh, ask Class, math, hassle Flap, cat, trap

Rule Analysis: Interpretation & Quantification

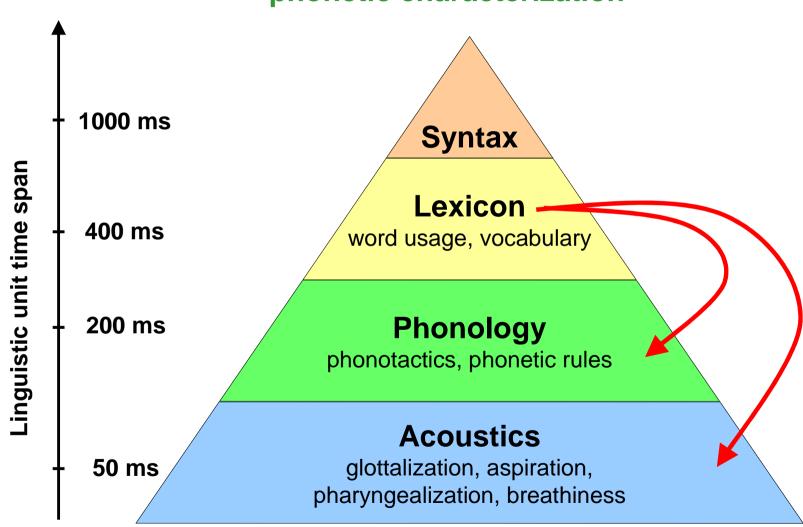
Examples of learned rules from PPM-1

Literature		Proposed System			
Rule	Dialect	Learned Rule	Prob	Dialect	
Interdental fricatives become stops	EG PS SY	[th] -> [t] / _ [+long]	0.79	EG	
			0.70	PS	
			0.87	SY	
		[dh] -> [d] / [-back] _	0.57	_ EG	
		[th] -> [t] / [-short] _ [-long]	0.62		
Vowel [o] exists (usually only [a], [i], [u] exist)	IQ	[o:] -> [u:] / _ [+fricative, -voiced]	0.68	- EG	
		[o:] -> [a] / _ [+fricative, +voiced]	0.51		

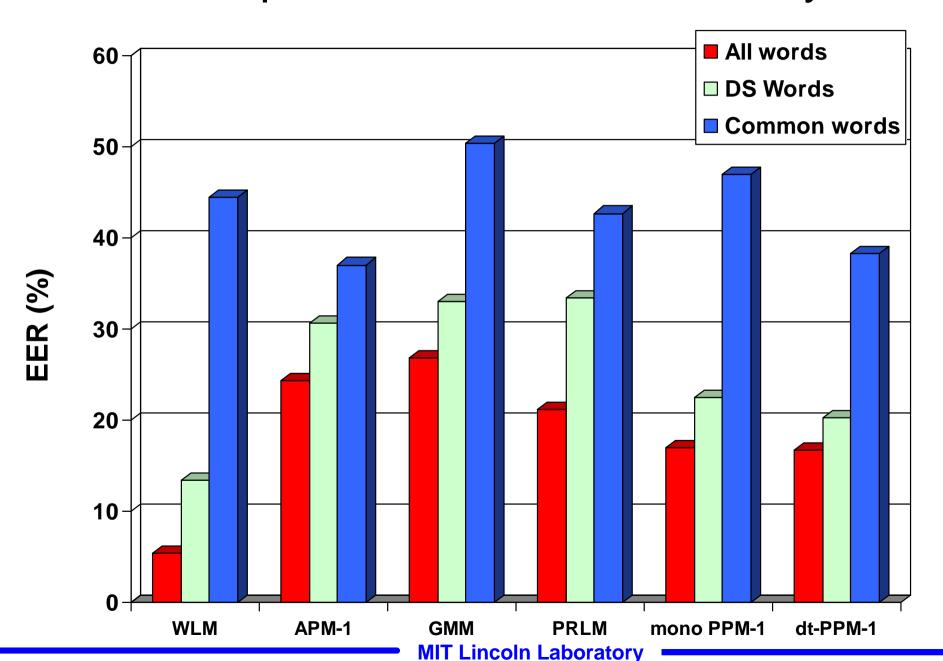
Word Usage Difference Complication

Lexical differences

Word usage differences across dialects complicates phonetic characterization

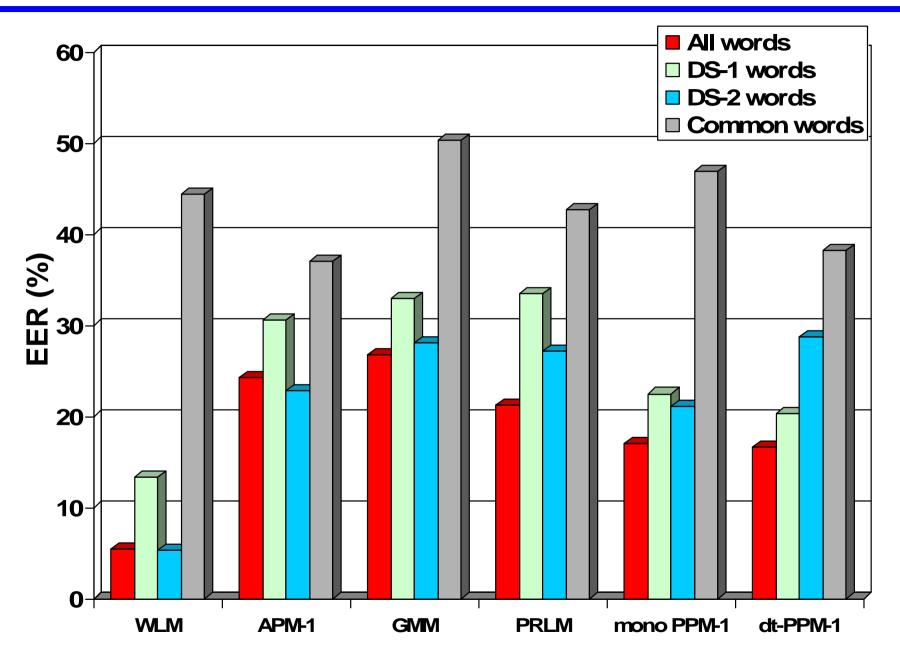


Dialect-Specific (DS) Words Complicate Pronunciation Analysis



105

Gains from word usage difference



Gains from word usage difference

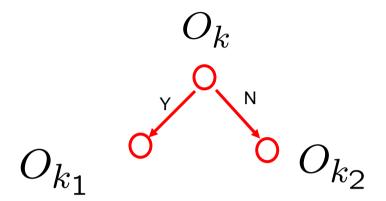
- DS-1: Words only specific to one single dialect
- DS-2: Words specific to more than one dialect
- Common words:
 - Words that do not help dialect recognition in word language model (WLM)

EER performance (%) scoring different types of words

System	All words	DS-1 words	DS-2 words	Common words
1-gram WLM	5.43	13.37	5.35	44.44
APM	22.45	30.65	22.8	37.04
GMM	27.92	33.00	28.14	50.38
PRLM	27.57	33.46	27.17	42.71
Mono. PPM-1	24.03	22.5	21.11	46.97
DT PPM-1	31.28	20.29	28.77	38.26

All systems score better on dialect-specific words than common words

Math



$$\Delta \log L = \log \frac{L(O_{k_1}|x \in H_f)L(O_{k_2}|x \notin H_f)}{L(O_k|x)}$$

$$\hat{H_f} = \arg\max_{H_f} \Delta \log_L \quad \text{\tiny (back)}$$