
A toolkit for speech recognition 

research

(According to legend, Kaldi was the Ethiopian goatherd who 

discovered the coffee plant).



Key aspects of the project

• Apache v2.0 license (very free)

• Available on Sourceforge

• Open source, collaborative project (we 

welcome new participants)

• C++ toolkit (compiles on Windows and 

common UNIX platforms)

• Has documentation and example scripts



Overview of features

• Context-dependent LVCSR system 

(arbitrary phonetic-context width)

• FST-based training and decoding (we use 

OpenFst)

• Maximum Likelihood training 

• Working on lattice generation + DT.

• All kinds of linear and affine transforms

• Example scripts demonstrate VTLN, SAT, 

etc.



Advantages versus other toolkits*

• Clean code, modular and extensible design

• Intended to be easy to understand and 
modify

• Very open license (Apache 2.0)

• Example scripts and documentation available

• Trying to build helpful and active community

• Good linear algebra support; FSTs

• Very scalable

• We intend to implement all state-of-the-art 
methods (inc. discriminative training)

*Disclaimer: some toolkits may have at least some of these 

advantages.



Features not on current “to-do” list

• No on-line decoder (batch mode only)
• It’s mostly for speech-recognition research

• No explicit support for parallelization 
(MapReduce, MPI)
• Would be too platform-specific… we use a HTK-

like approach where you can sum up 
accumulator files.

• No scripting-language wrapper
• Would force users to learn e.g. Python; we 

support configurability in different ways. 

• No forward-backward training
• We don’t believe it’s better than Viterbi; and 

Viterbi makes it convenient to write alignments 
to disk.



History of Kaldi (1/2)

• JHU 2009 workshop*, working (mostly) 
on Subspace Gaussian Mixture Models 
(SGMMs)

• Guys from Brno University of Technology 
(BUT) created “proto-Kaldi”…

• Had FST-based decoding and SGMM training 
setup

• Dependent on HTK for feature generation 
and building an initial GMM-based system

• Entire solution was complex due to merging 
of two different setups.

*This workshop  was funded by NSF Grant #IIS-0833652, with supplemental funding from Google, DARPA’s GALE 
program,  and JHU’s HLTCoE.  BUT researchers were partially supported in this period by Czech Ministry of Trade and 

Commerce Project # FR-TI1/034, Grant Agency of Czech Republic project no. 102/08/0707, and Czech Ministry of 
Education project no. MSM0021630528.  Arnab Ghoshal was partially supported during this period by the European 

Community’s Seventh Framework Programme under grant agreement number 213850 (SCALE).



History of Kaldi (2/2)

• In summer of 2010, some of us (+ new 
participants) went back to Brno for 2 months 
(“Kaldi workshop 2010”), hosted by Brno 
University of Technology.

• Aimed to build a self-contained, clean toolkit 
with no HTK dependency.

• Immediate goal was to create clean, releasable 
SGMM recipe.

• Wider goal of making a clean speech-
recognition toolkit.

• Completed a lot of it that summer but not 
ready for release until last week.



Kaldi contributors

• Individuals who wrote code for Kaldi* so far:
• Mohit Agarwal, Sandeep Boda1, Gilles Boulianne, Lukas 

Burget, Arnab Ghoshal, Mirko Hannemann, Ondrej 

Glembek, Nagendra Goel1, Pavel Matejka2, Petr Motlicek, 

Daniel Povey3, Yanmin Qian, Ariya Rastrow, Sandeep 

Reddy1, Petr Schwarz2, Jan Silovsky, Georg Stemmer, Karel 

Vesely, Haihua Xu.

• Also thanks to (non-exclusively)++:
• Alex Acero, Pinar Akyazi, Honza Cernocky, Paul Dixon, 

JHU’s CLSP staff + faculty, Tomas Kasparek, Renata 

Kohlova, Rico Malvar, Patrick Nguyen, Mike Riley, Rick 

Rose, Samuel Thomas, Geoffrey Zweig.

1GoVivace, Inc. 2Phonexia s.r.o. 3Microsoft Corp. (code contributed as employee) 

*I.e. specifically for Kaldi  ++There are probably inadvertent oversights



Kaldi dependency structure (approx)

OpenFst
base/

matrix/
fstext/

ATLAS/

CLAPACK

gmm/
sgmm/

util/

gmmbin/ sgmmbin/

transform

/
hmm/

tree/

lm/

bin/

decoder

/

feat/

featbin/ fstbin/

itf

/

[shell scripts]

fgmmbi

n

optimiza

tion/



Matrix library

• C++ wrapper for BLAS and CLAPACK linear 

algebra libraries (plus some extra code).

• Can use either (BLAS+CLAPACK), or ATLAS, or 

MKL, as external library.

• Supports generic, packed symmetric and 

packed triangular matrix formats.

• Supplies typical linear-algebra functionality 

(SVD, etc.), and FFT.

• Reusable: independent of rest of Kaldi code 

(except one  small directory “base/”).



OpenFst and fstext/

• OpenFst is open-source FST library (mostly 

from Google)

• We compile against it, e.g. decoding-graph 

object is an OpenFst object.

• fstext/ contains various extensions to OpenFst

• E.g. implementation of on-demand context-

dependency transducer

• Our FST recipe is a little bit different from the 

standard one and requires slightly different FST 

algorithms (e.g. determinization with epsilon 

removal)



Kaldi I/O

• Based on C++ streams

• Supports binary and text-mode formats

• extended filenames: “-”, “gunzip –c foo.gz|”, 

“/offset/into/file:12345”

• Archive format: generic mechanism to index 

objects by strings (typically utterance id)



Tree building and clustering code

• Very generic clustering and tree building 
mechanisms

• Easy to build trees in various different ways 
(globally shared tree roots, etc.)

• Our current recipes use automatically generated 
questions (minimize hassle)

• Mechanisms scalable to wide context (e.g. 
quinphone) and large phone-sets

• In WSJ recipe we, in effect, ask questions about 
phone-position and stress (via expanded phone set 
and specially constrained questions… this is mostly 
set up at the script level)



HMM and transition modeling

• This code is separate from the “GMM” side of 
things (just treat states as integer ids)

• Can specify a “prototype” topology for each phone

• Transition is separately estimated depending on the 
p.d.f. index on the state it comes out of

• Mechanisms for turning these HMMs into FSTs

• In our FSTs, the (input) labels encode more 
information than just the p.d.f. index (e.g. encodes 
the phone, the position in the HMM)

• This is so we can train the transitions (and can work 
out the phone sequences from this index sequence)



Decoding-graph creation

• There is a C++ mechanism for creating decoding 
graphs (FSTs) in training time, from 
transcriptions 

• These graphs are typically cached on disk

• We train using the Viterbi path through these 
graphs (redo Viterbi every few iterations)

• For the larger decoding graphs used in test time, 
we put relatively simple command-line tools 
together with a shell script

• Some of these are OpenFst tools, but mostly our 
own (using C++-level OpenFst mechanisms)



Gaussian Mixture Models (GMMs)

• Code for GMMs is fairly simple and passive

• Have avoided complex frameworks

• Representation of a single GMM

• Likelihood evaluation; mutators

• Separate class for accumulation and training

• Class for a collection of GMMs (indexed by 

integer pdf-index)… similar to vector<Gmm>

• Corresponding “accumulator” class

• GMM code does not “know about” HMMs, 

transition models, linear transforms, etc.



Linear transform code

• Code for estimation of various linear transforms

• LDA, HLDA, fMLLR/CMLLR, MLLT/STC, linear VTLN, 

“exponential transform” (something new, like VTLN), 

MLLR

• This code is specifically for GMMs (would code these 

algorithms separately for other models)

• Linear transforms applied in a unified way (code 

does not “know” how they were estimated)

• Usually applied as part of a pipe

• Mechanisms for regression trees for (fMLLR, MLLR)

• Used in separate command-line decoders (don’t want to 

complicate code that isn’t doing this)



Decoders
• Decoders (currently) use fully expanded FSTs 

• Currently 3 decoders on spectrum  simple ��fast

• But >3 command-line decoding programs!

• Decoders don’t “know about” GMMs, HMMs, etc: just 
the FSTs, and “Decodable” interface

• “Decodable” interface has function that says “give me 
score for this (frame, index)”… like matrix lookup

• We “wrap” GMMs etc. in a thin wrapper that satisfies 
“Decodable” interface

• Command-line decoding programs always do one pass of 
decoding and are for a specific (decoder, model type).

• Multiple decoding passes done at script level (invoke 
decoder multiple times)



Feature processing

• Support standard MFCC and PLP features

• A reasonable range of configurability (#mel bins, 
etc.)

• Read only .wav format

• Use external programs for format conversion, 
e.g. from sphere

• Typically write features (like other objects) all to 
a very large file

• Expansion with deltas, fMLLR, etc. typically done 
using pipes, on-the-fly, to minimize disk I/O

• In next talk will explain the framework for this.



Command-line tools
• Large number of command-line tools (>150), each 

with a fairly simple function

• Command-line tools take options e.g. 

compute-mfcc-feats --use-energy=false  \

ark:data/train_wav.scp  \

ark,scp:data/train.ark,train,scp

• We rarely need to supply more than a few options 
to any given program

• Command line tools generally have quite simple 
code.

• C++ code doesn’t have to worry much about I/O 
(handled through templated code via “Table”
concept… will explain after the break).



Scripts (example fragment)
#!/bin/bash

…

while [ $x -lt $numiters ]; do

if echo $mllt_iters | grep -w $x >/dev/null; then # Do MLLT update.

( ali-to-post ark:$dir/cur.ali ark:- | \

weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- | \

gmm-acc-mllt --binary=false $dir/$x.mdl "$featsub" ark:- $dir/$x.macc ) \

2> $dir/macc.$x.log  || exit 1;

est-mllt $dir/$x.mat.new $dir/$x.macc 2> $dir/mupdate.$x.log || exit 1;

gmm-transform-means --binary=false $dir/$x.mat.new $dir/$x.mdl $dir/$[$x+1].mdl \

2> $dir/transform_means.$x.log || exit 1;

compose-transforms --print-args=false $dir/$x.mat.new $cur_lda $dir/$x.mat || exit 1;

cur_lda=$dir/$x.mat

feats="ark:splice-feats scp:data/train.scp ark:- | transform-feats $cur_lda ark:- ark:-|"

# Subset of features used to train MLLT transforms.

featsub="ark:scripts/subset_scp.pl 800 data/train.scp | splice-feats scp:- ark:- | 

transform-feats $cur_lda ark:- ark:-|"

else

….



Scripts (points to note)

• Scripts quite complex 

• Much of the configurability of Kaldi takes place 

at shell-script level

• This helps keep the C++ code simple

• Note use of pipes: features, alignments etc. are 

passed through pipes.



Selected results (WSJ)

• SI-284 training,  Sennheiser microphone, 20k open 
vocabulary test, bigram LM supplied with WSJ.

• Unadapted, cross-word triphones (but HTK system 
was gender-dependent)

• This is not our best result, just showing that with 
comparable algorithms we get comparable results)

%WER Nov’92 Nov’93

Reichl (2000) 11.9 15.4

HTK (gender dep.)  

(ICASSP’94)

11.1 14.5

Kaldi 11.8 15.0



Speed, decoding issues (WSJ)

• We can’t yet decode with full trigram LM from 

WSJ (graph too large)… but pruned one is OK

• Working on this issue

• Decoding speed for previous results is about 

0.5xRT (i.e. twice faster than real time)

• Training time: takes a few hours to train the 

previous system, on a single machine (using up 

to 3 CPUs)



Further results (RM)

• Both systems cross-word triphone with cepstral 

mean normalization

• HTK results from ICASSP’99 paper (Povey et. al)

• Probably slightly better than RMHTK recipe due to 

variable #gauss per state.

• Decoding speed ~0.1xRT

%WER Feb’89 Oct’89 Feb’91 Sep’92 Avg

HTK 2.77 4.02 3.30 6.29 4.10

Kaldi 3.20 4.10 2.86 6.06 4.06



RM: unadapted experiments

• All results averaged over 6 RM test sets

%WER None

MFCC+∆+∆∆ 4.59

+mean normalization 4.16

MFCC+∆+∆∆ + MLLT/STC 4.59

Splice-9 + LDA 5.04

Splice-9 + LDA + MLLT/STC 4.35

Splice-9 + HLDA 4.61

Triple-deltas + HLDA 4.32

Triple-deltas + LDA + MLLT/STC 3.95

SGMM 3.15



RM: adapted experiments

• “ET”= Exponential Transform (like VTLN)

%WER Utt Spk

MFCC+∆+∆∆ (fMLLR) 4.56 3.67

MFCC+∆+∆∆ + ET 3.35 3.32

MFCC+∆+∆∆ + VTLN 3.94 3.56

Splice-9 + LDA + ET 3.29 3.08

+ fMLLR 2.73

Splice-9 + LDA + MLLT/STC + 

SAT

5.10 2.75

SGMM + spk-vecs 2.72 2.68

SGMM + spk-vecs + fMLLR 2.53

SGMM + fMLLR 2.77



Why use Kaldi

• Easy to use (once you learn the basics, and 

assuming you understand the underlying 

science)

• Easy to extend and modify.

• Redistributable:  unrestrictive license, 

community project.

• If you stuff works or is interesting, the Kaldi 

team is open to including it and your 

example scripts in our central repository �

more citations, as others build on it.


