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General Goal

Extracting features associated brain condition from
brain signals to exploit brain computer interfaces (BCI). J

Several features corresponding

: iy SSVEP
to brain condition can be D 5
observed by the observation M
system such as EEG and fMRI.

BCls capture such features and assign the device
commands corresponding to each brain condition.

In this study, we focus on EEG as measurement
method and the feature induced by imaging
movement of body.
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Motor Imagery Based BCI (MI-BCI)
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EEG Features of MI-BCI

e An energy in frequency band called mu rhythm
desynchronizes by imaging movement.
e The desynchronized location in the brain depends

on imagined part.

If we know
e a change of the energy in a certain frequency band
o spatial location of its energy change
we can recognize imagined part of the body movement
from EEG signals.

Effective method in 2-class MI-BCI

[Ramoser, et al.]
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Common Spatial Pattern (CSP)

[H. Ramoser, et al., 2000.]
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Common Spatial Pattern (CSP)

[H. Ramoser, et al., 2000.]
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CSP: How to Find w (2-Class Problem)

The expectation of the variance of spatial-weighted

signal belonging to class ¢ is minimized.
e c:aclasslabel, c € {1,2}

Optimization problem

min  Exec,[var( w'X)]
subjectto Y~ Exec,[var(w’ X)] = 1
d=1,2

e (.: a set of data belonging to class ¢
e Excc,: expectation over Cy

For classification we can use a variance of the
extracted signal w' X as feature value. e



Problem: Filtering for CSP

CSP needs bandpass filtering as

pre-processing. gl
The optimal frequency band depends LY
on a measurement environment and/or - o o f, i,
a subject [J. Muller-Gerling, et al., °e°

1999]. Filtering
@ W Xwi
W %)
We want the best filter to extract AN XWs
components that mostly contain U._rx

features related to the motor-imagery.
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Design Methods for the Filter

Searching band with learning data by cross-validation
Search the most classifiable band out of candidates.

= The number of the candidates is finite.
Huge computational cost is needed, when a lot of candidates.

Common Spatio-Spectral Pattern (CSSP) [S. Lemm, et al.]
Cannot provide complicated frequency selectivity.

Common Sparse Spectral Spatial Pattern (CSSSP)

[G. Dornhege, et al.]
Cost function includes the sparsity criteria.
Optimization is very complex and time-consuming.

Spectrally weighted CSP (SPEC-CSP) [R. Tomioka, et al.]

No guarantee that the optimization converges
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Outline of the Proposed Method

We propose a new simple method to design the
spatio-frequency filters.

o Add into the cost function of CSP parameters
that are weights for frequency components.

e Alternating optimize both a spatial filter
(pattern) and a frequency filter.

= I'he cost function converges because the single cost.

e The optimization sub-problems are reduced to
generalized eigenvalue problems.
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Preliminary: Block lllustrates a Signal

Element

For easily understanding, we illustrate an element of a
signal matrix as a block.
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Preliminary: Time-Shifted DFT

Windowing a signal matrix X with length 2N’ and
shifting by D samples.

[)N(/]m,n - [X]m,(l—1)D+1+n
Transform X, to spectrum Y, € RMxN

[Vilmn = [[7(X))
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Definition the Feature Using Spectra

z(X,w. h) =) |w'Yh?

O x OO x OO x

A
I
rrx
+
x
+
+
x

h

e w: vector of spatial weights for channels.

e h: vector of spectral weights for frequency
components.

= NEXT: How to find w and h.
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Optimization Criterion for Weights

Design the optimization problem for both weight vectors
by extending CSP cost.

w. and h. are decided such that expectation of feature
Z belonging to class ¢ is minimized in learning data.

Optimization problem

min f(w, h) = Excc.[Z]
w,h

subject to Z Exce,[z] = 1
d=1,2

e c: an optional class label, c € {1,2}
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Alternating Optimization

Difficult to simultaneously optimize both w and h.
= Divide the problem into two sub-problems.
© Optimization w while fixing h.
® Optimization h while fixing w.

Note z can be transformed the following forms.
L
V4 :WT <Z V/hhT( V/)T> w
/=1
L
=h' (Z Y/WWT(Y/)T> h

=1
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Sub-Problems

Sub-problem 1: Optimization w while fixing h

min w'R.w, subjectto w'(Ry + Rx)w = 1

® Rd = EV/ECd [Z/LZ'I V/hhT( V/)T]

Sub-problem 2: Optimization h while fixing w

min h"Q.h, subjectto h’(Q; + Q:)h =1

° Qd = E?/GCd [ZIL:1 V/WWT( ?/)T]

Sub-problems can be reduced to generalized
eigenvalue problems.
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Iteration Steps for Optimization

Step 1 Initialize h.
Step 2 Optimize w by solving Sub-problem 1.
Step 3 Optimize h by solving Sub-problem 2.

Step 4 Repeat Step 2 and Step 3 until cost function
f(w, h) is converged.
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Classification Rule

The extracted feature value are classified by following
rules.

Method 1: use different filter h between classes

u = argmin z(X, w,, h,) = X €C,.
c

Method 2: use common filter h in all classes

e wy and hy are found in a class g where g is an
optional class label.

 Solve Sub-problem 1 with R(hy) in other class g,
and get wy.

u = argmin z(X, w¢, hy) = X €C,.
Cc

4
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Dataset: BClI Competition Il dataset [Va

2 classes EEG (right hand and right foot motor imagery)
5 subjects (aa, al, av, aw, ay)

118 electrodes (extended 10-20 method)

Sampling frequency: 100 Hz.

The number of trials in each class: 140

Duration of each trial: 3.5 seconds

Compared Feature extraction methods

CSP1 (with the bandpass filter with the passband of 7-30 Hz)
CSP2 (with the bandpass filter manually-optimized by CV)

CSSP

SPEC-CSP

= In the methods, we adopted simple classification rules which is
to compare the feature values corresponding to each class.

u = argmin var(w] X)
c 19/27



Experimental Result
Classification Accuracy

Table: Classification accuracy [%] by 5x5 CV

Subject
Method aa al av aw ay |Ave.
CSP1 69.3 89.9 49.1 89.0 80.1|755
CSP2 82.6 96.9 52.7 96.9 81.5|82.1
CSSP 76.2 93.6 51.3 96.5 84.4 804

SPEC-CSP | 79.6 94.8 49.4 96.4 84.3|80.9
Method1 |82.4 95.3 50.8 91.6 90.1 | 82.0
Method2 |83.2 97.6 49.1 94.5 90.6 | 83.0

Parameters in the proposed method: Frame length 50, shift
sample 5.
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Amplitude Characteristic (subject al)
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e The proposed method gave the same passband as
that manually optimized.
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Amplitude Characteristic (subject aa)
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e The proposed method also have large weights in

40

band higher than the manually-optimized

passband.

e The higher bands look the harmonics of 10—-15 Hz.
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Spatial Weight Pattern (subject aa)

(a) CSP1 (b) CSP2 (c) CSSP (d) SPEC-CSP  (e) Proposed

Figure: Subject aa

¢ All methods gave almost same spatial weights.
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Spatial Weight Pattern (subject ay)

(c) CSSP (d) SPEC-CSP () Proposed

Figure: Subject ay

« Different frequency components gave different
spatial patterns.
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Conclusions

e Propose a method to design the weights for
channels and frequency components using
learning data.

e The solution of the weight optimization can be
obtained by alternating solving sub-problems,
generalized eigenvalue problems.

= The cost function is non-increasing in each iteration.
o The proposed method achieves higher

classification accuracy in motor-imagery based
BCI.
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Present Works

We already developed

» atemporal filter design method to easily apply
realtime application,

e a method to design a bank of spatio-temporal
filters to extract plural EEG frequency features.

The works are to be presented.
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Thank you for your
attentions!
Any questions?



Amplitude Characteristic (subject av)
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Amplitude Characteristic (subject aw)
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Amplitude Characteristic (subject ay)
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Spatial Weight Pattern (subject al)

(a) CSP1 (b) CSP2 (c) CSSP (d) SPEC-CSP () Proposed

Figure: Subject al
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Spatial Weight Pattern (subject av)

(a) CSP1 (b) CSP2 (c) CSSP (d) SPEC-CSP (e) Proposed

Figure: Subject av
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Spatial Weight Pattern (subject aw)

(a) CSP1 (b) CSP2 (c) CSSP (d) SPEC-CSP () Proposed

Figure: Subject aw
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Relation of Parameters and Classification

Accu racCy (subject aa)

N’: signal lengths, D: shift samples
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