P and T Wave Delineation and Waveform Estimation in ECG Signals Using a Block Gibbs Sampler

Chao Lin¹, Georg Kail², Jean-Yves Tourneret¹, Corinne Mailhes¹, Franz Hlawatsch²

¹University of Toulouse - IRIT/ENSEEIHT/TéSA, Toulouse, FRANCE
²Vienna University of Technology - Institute of Telecommunications, Vienna, AUSTRIA

IEEE ICASSP'11, Prague, Czech Republic

Outline

- Context
 Electrocardiogram (ECG)
 ECG delineation
- 2 Problem formulation
- 3 Bayesian model
 Likelihood function
 Prior distribution
- Block Gibbs sampler
- Results
 Typical examples
 Evaluation on QT database
- **6** Conclusion and future works
- Appendix

Context

Outline

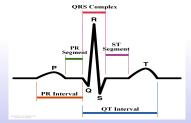
- Context
 - Electrocardiogram (ECG) ECG delineation
- Problem formulation
- 3 Bayesian model
 Likelihood function
 Prior distribution
- 4 Block Gibbs sampler
- Results

Typical examples
Evaluation on QT database

- 6 Conclusion and future works
- 7 Appendix

Electrocardiogram (ECG)

- A recording of the electrical activity of the heart over time
- 3 distinct waves are produced during cardiac cycle
 - P wave caused by atrial depolarization
 - QRS complex caused by ventricular depolarization
 - T wave results from ventricular repolarization and relax
- Wave shapes and interval durations indicate clinically useful information



Context

ECG delineation

• Delineation: determination of peaks and boundaries of the waves

Context

ECG delineation

- Delineation: determination of peaks and boundaries of the waves
- P and T wave delineation—a challenging problem

ECG delineation

- Delineation: determination of peaks and boundaries of the waves
- P and T wave delineation—a challenging problem
- Existing methods
 - Filtering: adaptive filtering, nested median filtering, low pass differentiation (LPD)
 - Basis expansions: Fourier transform, discrete cosine transform, wavelet transform (WT)
 - Classification and pattern recognition: fuzzy theory, hidden Markov models, artificial neural networks
 - Bayesian inference: off line and sequential approaches (Kalman filter)

Problem formulation

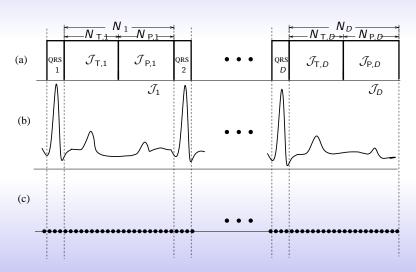
Outline

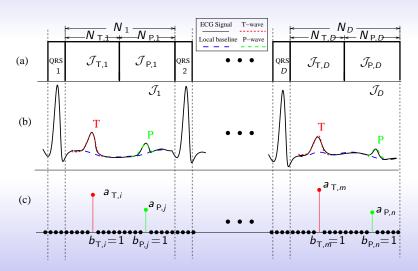
- Context
 Electrocardiogram (ECG)
 ECC delineation
- Problem formulation
- 3 Bayesian model
 Likelihood function
 Prior distribution
- Block Gibbs sampler
- Results

Typical examples

Evaluation on QT database

- 6 Conclusion and future works
- Appendix





non-QRS signal components within a D-beat window

$$x_{k} = \sum_{I=-L/2}^{L/2} h_{T,I} u_{T,k-I} + \sum_{I=-L/2}^{L/2} h_{P,I} u_{P,k-I} + c_{k} + w_{k}, \quad k \in \mathcal{J}^{*},$$
(1)

- $u_{T,k} = b_{T,k} a_{T,k}$: unknown "impulse" sequence indicating T wave locations and amplitudes,
- $u_{P,k} = b_{P,k} a_{P,k}$: unknown "impulse" sequence indicating P wave locations and amplitudes,
- $\mathbf{h}_{\mathrm{T}} = (h_{\mathrm{T}, -L/2} \cdots h_{\mathrm{T}, L/2})^T$: unknown T waveform,
- $\mathbf{h}_{\mathrm{P}} = (h_{\mathrm{P}, -L/2} \cdots h_{\mathrm{P}, L/2})^T$: unknown P waveform,
- c_k : baseline sequence, w_k : white Gaussian noise

 Representation of the P and T waveforms by a Hermite basis expansion

$$\mathbf{h}_{\mathrm{T}} = \mathbf{H} \boldsymbol{lpha}_{\mathrm{T}} \,, \quad \mathbf{h}_{\mathrm{P}} = \mathbf{H} \boldsymbol{lpha}_{\mathrm{P}} \,,$$

- **H** is a $(L+1) \times G$ matrix whose columns are the first G Hermite functions with $G \leq (L+1)$
- $oldsymbol{lpha}_{
 m T}$ and $oldsymbol{lpha}_{
 m P}$ are unknown coefficient vectors of length G
- Modeling of the local baseline within the n-th non-QRS interval by a 4th-degree polynomial

$$\mathbf{c}_n = \mathbf{M}_n \boldsymbol{\gamma}_n$$

- \mathbf{M}_n is the known $N_n \times 5$ Vandermonde matrix
- $\gamma_n = (\gamma_{n,1} \cdots \gamma_{n,5})^T$ is the unknown coefficient vector

vector representation of the non-QRS signal in (1)

$$\mathbf{x} = \mathbf{F}_{\mathbf{T}} \mathbf{B}_{\mathbf{T}} \mathbf{a}_{\mathbf{T}} + \mathbf{F}_{\mathbf{P}} \mathbf{B}_{\mathbf{P}} \mathbf{a}_{\mathbf{P}} + \mathbf{M} \boldsymbol{\gamma} + \mathbf{w}, \qquad (2)$$

- \mathbf{b}_{T} , \mathbf{b}_{P} , \mathbf{a}_{T} , and \mathbf{a}_{P} denote the $M \times 1$ vectors corresponding to $b_{\mathrm{T},k}$, $b_{\mathrm{P},k}$, $a_{\mathrm{T},k}$, and $a_{\mathrm{P},k}$, respectively.
- $\mathbf{B}_{\mathrm{T}} \triangleq \mathrm{diag}(\mathbf{b}_{\mathrm{T}})$ and $\mathbf{B}_{\mathrm{P}} \triangleq \mathrm{diag}(\mathbf{b}_{\mathrm{P}})$,
- \mathbf{F}_{T} and \mathbf{F}_{P} are the $K \times M$ Toeplitz matrices with first row $(\mathbf{h}_{1}^{T} \boldsymbol{\alpha}_{\mathrm{T}} \ \mathbf{0}_{M-1}^{T})$ and $(\mathbf{h}_{1}^{T} \boldsymbol{\alpha}_{\mathrm{P}} \ \mathbf{0}_{M-1}^{T})$, respectively.
- \mathbf{M} , and γ are obtained by concatenating the \mathbf{M}_n and γ_n , for $n=1,\ldots,D$.

Bayesian model

Outline

- **Problem formulation**
- Bayesian model Likelihood function Prior distribution
- **Block Gibbs sampler**

Model parameters

Bayesian estimation relies on the posterior distribution

$$p(\theta|\mathbf{x}) \propto p(\mathbf{x}|\theta)p(\theta)$$

- $\theta = (\theta_{\mathrm{T}}^T \theta_{\mathrm{P}}^T \theta_{\mathrm{cw}}^T)^T$ are the unknown parameters resulting from (2)
 - $\theta_{\mathrm{T}} \triangleq (\mathbf{b}_{\mathrm{T}}^T \mathbf{a}_{\mathrm{T}}^T \boldsymbol{\alpha}_{\mathrm{T}}^T)^T$ and $\theta_{\mathrm{P}} \triangleq (\mathbf{b}_{\mathrm{P}}^T \mathbf{a}_{\mathrm{P}}^T \boldsymbol{\alpha}_{\mathrm{P}}^T)^T$ are T and P wave related parameter vectors,
 - $\theta_{\text{cw}} \triangleq (\gamma^T \sigma_w^2)^T$ are baseline and noise parameters.

Likelihood function

$$p(\mathbf{x}|\boldsymbol{\theta}) \propto \frac{1}{\sigma_w^K} \exp\!\left(\!-\frac{1}{2\sigma_w^2} \|\mathbf{x} - \mathbf{F}_\mathrm{T} \mathbf{B}_\mathrm{T} \mathbf{a}_\mathrm{T} - \mathbf{F}_\mathrm{P} \mathbf{B}_\mathrm{P} \mathbf{a}_\mathrm{P} - \mathbf{M} \boldsymbol{\gamma} \|^2\right),$$

where $\|\cdot\|$ is the ℓ_2 norm, i.e., $\|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x}$.

Location prior

T wave indicator prior: block constraint

$$p(\mathbf{b}_{\mathcal{J}_{\mathrm{T},n}}) = egin{cases} p_0 & ext{if } \|\mathbf{b}_{\mathcal{J}_{\mathrm{T},n}}\| = 0 \ p_1 & ext{if } \|\mathbf{b}_{\mathcal{J}_{\mathrm{T},n}}\| = 1 \ 0 & ext{otherwise}, \end{cases}$$

Assuming independence between consecutive non-QRS intervals, the prior of \mathbf{b}_{T} is given by

$$p(\mathbf{b}_{\mathrm{T}}) = \prod_{n=1}^{D} p(\mathbf{b}_{\mathcal{J}_{\mathrm{T},n}}).$$

Amplitude and waveform priors

T wave amplitude prior

$$p(a_{\mathrm{T},k}|b_{\mathrm{T},k}=1) = \mathcal{N}(a_{\mathrm{T},k};0,\sigma_a^2)$$

- $a_{T,k}$ are only defined at time instants k where $b_{T,k} = 1$,
- $u_{T,k} = b_{T,k} a_{T,k}$ is a Bernoulli-Gaussian sequence with block constraints.

T waveform coefficients prior

$$p(oldsymbol{lpha}_{\mathrm{T}}) = \mathcal{N}(oldsymbol{lpha}_{\mathrm{T}}; oldsymbol{0}, \sigma_{lpha}^2 oldsymbol{\mathsf{I}}_{L+1})$$

The priors of the P wave parameters \mathbf{b}_{P} , \mathbf{a}_{P} and α_{P} are defined in a fully analogous way!

Baseline and noise variance priors

Baseline coefficient prior

$$p(\gamma) = \mathcal{N}(\gamma; \mathbf{0}, \sigma_{\gamma}^2 \mathbf{I}_{5D})$$

Noise variance prior

$$\sigma_w^2 = \mathcal{IG}\left(\sigma_w^2; \xi, \eta\right)$$

Conjugate priors for simplicity

Posterior distribution

$$p(\theta|\mathbf{x}) \propto p(\mathbf{x}|\theta)p(\theta) = p(\mathbf{x}|\theta)p(\theta_{\mathrm{T}})p(\theta_{\mathrm{P}})p(\theta_{\mathrm{cw}})$$

Complex distribution

Outline

- **Problem formulation**
- Block Gibbs sampler

Block Gibbs sampler

- In a *D*-beat processing window, for each non-QRS interval:
 - Sample the T indicator block $\mathbf{b}_{\mathcal{J}_{\mathrm{T},n}}$
 - For the k where $b_{T,k} = 1$, sample the T amplitudes $a_{T,k}$
 - ullet Sample the P indicator block $oldsymbol{b}_{\mathcal{J}_{\mathrm{P},n}}$
 - For the k where $b_{P,k} = 1$, sample the P amplitudes $a_{P,k}$
- Sample P and T waveform coefficients $lpha_{
 m T}$ and $lpha_{
 m P}$
- Sample baseline coefficients γ
- Sample noise variance σ_w^2

Results

Outline

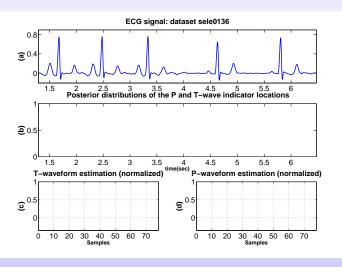
- **Problem formulation**
- **Block Gibbs sampler**
- Results

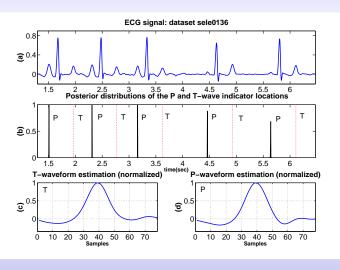
Typical examples Evaluation on QT database

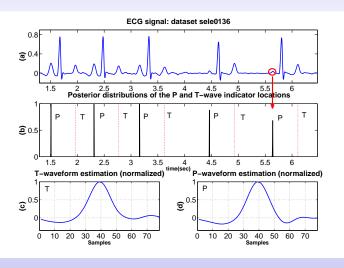
Results

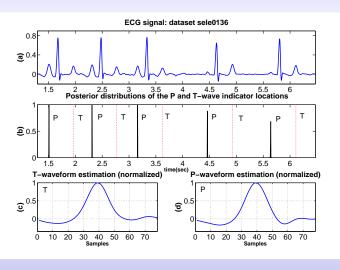
Simulation parameters

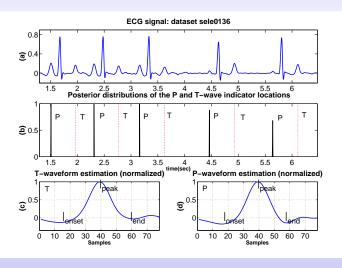
- Preprocessing: QRS complexes detection using the algorithm of Pan et al. (IEEE Trans. Biomed. Eng., 1985),
- Processing window length: D = 10,
- For each estimation, the 40 first iterations are disregarded (burn-in period) and 60 iterations are used to compute the estimates.
- Real ECG datasets from the QT database.
- Computation time: 8 seconds to run 100 iterations on a 10-beat ECG block (Matlab implementation).
- C. Lin et al., P- and T-wave delineation in ECG signals using a Bayesian approach and a partially collapsed Gibbs sampler, *IEEE Trans. Biomed. Eng.*, 2010



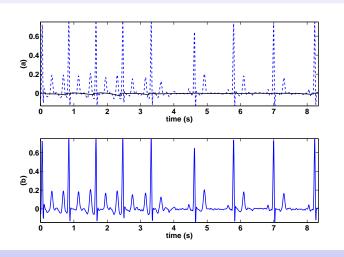


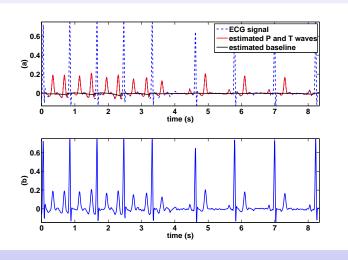


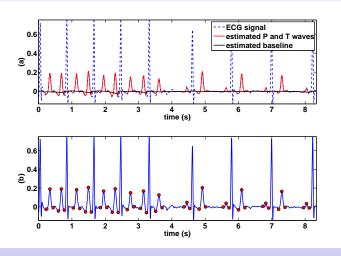




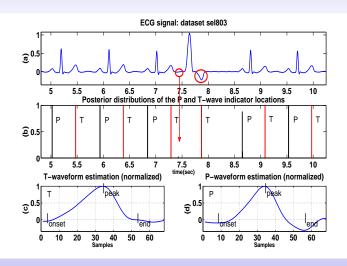




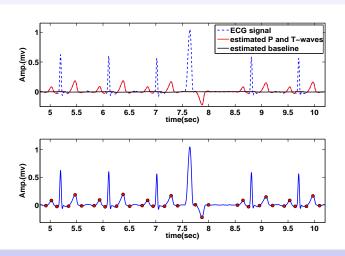




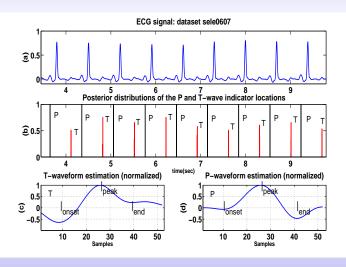
Premature ventricular contraction ECG



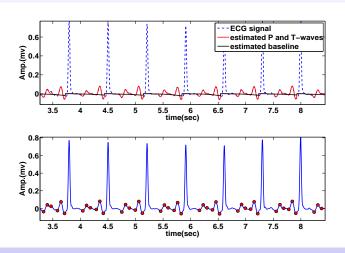
Premature ventricular contraction ECG



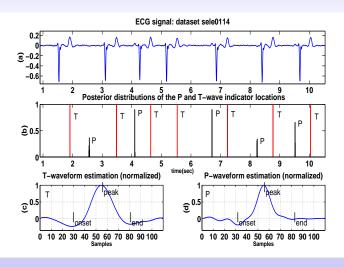
Biphasic T wave ECG



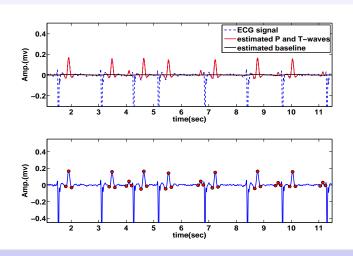
Biphasic T wave ECG



Absence of P wave



Absence of P wave



Evaluation on QTDB

Table: Delineation and detection performance for QTDB

Parameter	Proposed alg.	LPD	WT
b _P : Se (%)	99.60	97.70	98.87
Onset-P: $\mu \pm \sigma$ (ms)	1.7 ±10.8	14.0 ± 13.3	2.0 ± 14.8
Peak-P: $\mu \pm \sigma$ (ms)	2.7 ±8.1	4.8 ± 10.6	3.6 ± 13.2
End-P: $\mu \pm \sigma$ (ms)	2.5 ± 11.2	−0.1 ±12.3	1.9 ± 12.8
b _T : Se(%)	100	97.74	99.77
Onset-T: $\mu \pm \sigma$ (ms)	5.7 ±16.5	N/A	N/A
Peak-T: $\mu \pm \sigma$ (ms)	0.7 ±9.6	-7.2 ± 14.3	0.2 ± 13.9
End-T: $\mu \pm \sigma$ (ms)	2.7 ± 13.5	13.5 ± 27.0	-1.6 ±18.1

Outline

- Electrocardiogram (ECG)
- Problem formulation
- 3 Bayesian model
 Likelihood function
 Prior distribution
- 4 Block Gibbs sampler
- 5 Results
 Typical examples
 - Evaluation on QT database
- 6 Conclusion and future works
- Appendix

Conclusion and future works

Conclusion

- A Bayesian model for the non-QRS intervals of ECG signals,
- A block Gibbs sampler for joint delineation and waveform estimation of P and T waves,
- Evaluation on the QTDB is promising.

Prospects

- Exploitation of the amplitude estimation, ex., TWA detection,
- Exploitation of the waveform estimation, ex., arrhythmia detection,
- Beat-to-beat / sequential delineation.

Thank you for your attention!

Matlab demo available at http://www.enseeiht.fr/~lin

Appendix

Outline

- **Problem formulation**
- **Block Gibbs sampler**

- **Appendix**

Time-shift and scale ambiguities

Issue: No unique solution for a convolution model

- Scale ambiguity: $\mathbf{h} \star \mathbf{u} = (a\mathbf{h}) \star (\mathbf{u}/a), \forall a \neq 0$,
- Time-shift ambiguity: $\mathbf{h} \star \mathbf{u} = (d_{\tau} \star \mathbf{h}) \star (d_{-\tau} \star \mathbf{u}), \ \forall \tau \in \mathbb{Z}.$

Solution: Hybrid Gibbs sampling

- Metropolis-Hastings within Gibbs after sampling waveform coefficients.
- Deterministic shifts after sampling waveform coefficients:
 - Time-shifts to have $h'_0 = \max |\mathbf{h}|$,
 - Scale-shifts to have $h'_0 = 1$,

C. Labat et al., Sparse blind deconvolution accounting for time-shift ambiguity, ICASSP, 2006

References

Similar applications on physiological signal processing:

- on OCT signals: G. Kail et al., A blind Monte Carlo detection-estimation method for optical coherence tomography, ICASSP, 2009
- On ECG signals: C. Lin et al., P- and T-wave delineation in ECG signals
 using a Bayesian approach and a partially collapsed Gibbs sampler, IEEE Trans.
 Biomed. Eng., 2010
- on EMG signals: D. Ge et al., Spike sorting by stochastic simulation, IEEE Trans. Neural. Syst. Rehabil. Eng., 2011

Other P and T wave delineation methods:

- LPD: P. Laguna et al., Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database, Comput. Biomed. Res., 1994
- WT: J. P. Martínez et al., A wavelet-based ECG delineator: Evaluation on standard databases, IEEE Trans. Biomed. Eng., 2004
- KF: O. Sayadi et al., A model-based Bayesian framework for ECG beat segmentation, J. Physiol. Meas., 2009