Frequency Selective Pitch Transposition of Audio Signals

Sascha Disch, Bernd Edler

Bernd.Edler@audiolabs-erlangen.de

International Audio Laboratories Erlangen

A joint institution of Friedrich-Alexander-Universität Erlangen Nürnberg and the Fraunhofer Institute for Integrated Circuits (IIS)

May 2011

Motivation

- Modern music production often relies on mixing of pre-recorded "samples"
- Need to adapt "samples" ex post to a different musical context
- Key mode conversion, e.g. major-to-minor or vice versa
- Modulation vocoder (MODVOC) has already been shown to be suitable for this task
- Special enhancements are proposed to address requirements for this application

Modulation vocoder (MODVOC)

- Single-pass analysis, block-wise processing
- Signal adaptive BP filter aligned with spectral centers of gravity
- Additive synthesis with bonding: pairing of components between subsequent time blocks

Enhancements: Envelope Shaping (ES)

- Global coherence is lost due to modifications on each individual MODVOC component
- Temporal smearing of transients (dispersion)
- Envelope shaping (ES) uses duality:
 autocorrelation of spectrum ↔ square of Hilbert envelope

Enhancements: Harmonic Locking (HL)

- An instrument sound consists of fundamental and overtones
- Overtone series are quasi-harmonic on a linear frequency scale (integer multiples of f_0)
- Musical intervals are based on logarithmic scale
- Meaning of MODVOC component in terms of musicology dependant on predominant origin
- This must be considered in selective transposition for preservation of timbre → ambiguity
- What is the musical interpretation of each component?
 - Fundamental or
 - Overtone/Harmonic?

Enhancements: Harmonic Locking (HL)

- Intervals of harmonics with respect to their fundamental
- Ambiguity example: scale degree: tonic, 5th harmonic

 → a major third or the fifth harmonic of the fundamental?

			T
Harmonic number			Interval name
1	2	4	perfect unison (P1)
			minor second (m2)
		9	major second (M2)
			minor third (m3)
	5		major third (M3)
			perfect fourth (P4)
			tritone
	3	6	perfect fifth (P5)
			minor sixth (m6)
			major sixth (M6)
		7	minor seventh (m7)
			major seventh (M7)

Enhancements: Harmonic Locking (HL)

- Harmonic locking (HL)
- Estimated fundamentals are mapped directly
- Frequency shift of overtone is locked to shift of its estimated fundamental

Listening Tests: Methodology

Generation of synthetic test conditions

Listening Tests: Commercial System

- Additional comparison of MODVOC to commercial system
- Direct note access (DNA) in "Melodyne editor" by Celemony
- Available since autumn 2009
- Selective editing of polyphonic music
- Principle
 - Multi-pass analysis
 - Automatic decomposition into "notes"
 - Heuristic classification rules
- Can be operated to perform key mode conversion

Listening Tests: Conditions, Items

name	description	instruments	key mode
Α	Violin Concerto J. S. Bach, BWV1041	Orchestra	Amin
В	Eine kleine Nachtmusik W. A. Mozart, KV525 Mv1	String Quartet	Gmaj
С	Berceuse G. Fauré, Op56	Flute and Guitar	Emaj
D	Nocturno F. Strauss, Op7	Horn and Piano	Dbmaj
E	Waltz F. Carulli, Op241 No1	Guitar	Cmaj
F	Ein Musikalischer Spass W.A. Mozart, KV522 Mv1	Horns, Violin, Viola, Cello	Fmaj
G	Ode an die Freude L. v. Beethoven	Piano	Gmaj
Н	Piano Trio L. v. Beethoven, Op11 Mv3	Clarinet, Cello, and Piano	Bbmaj

Listening Test 1: MUSHRA Results

Average and 95% Confidence Intervals

Listening Test 1: Results

- HL indeed improves timbre of all items
- ES indeed improves transient parts of items (e.g. onsets of guitar, piano)
- DNA is rated better than MODVOC in 5 out of 7 items
- Overall rating covers many aspects
 - Unnatural sounding artifacts (clicks, pre- and post-echoes, etc.)
 - Melody and chord transposition
 - Timbre preservation
- Listeners informally reported a trend for transposition errors in DNA and timbre problems for MODVOC
- → formal preference tests on main quality aspects

Listening Test 2: Methodology, Items

- Preference tests on these aspects, 12 expert listeners having both technical and musical background
- Conditions: MODVOC with ES and HL, DNA
- Unknown melody is hardly remembered by subjects → now key mode changed in MIDI; items converted back to original key mode in waveform domain

name	description	instruments	key mode
1	Violin Concerto J. S. Bach, BWV1041	Orchestra	Amin
2	Berceuse G. Fauré, Op56	Flute and Guitar	Emaj
3	Ode an die Freude L. v. Beethoven	Piano	Gmaj
4	Concerto for Violin and Orchestra L. v. Beethoven, Op61	Violin and Orchestra	Dmaj

Listening Test 2: Preference Results

- MODVOC is indeed preferred for melody transposition
- DNA is preferred for the most part wrt. timbre preservation

Original Orig. tr. MODVOC DNA All (short)

Listening Test 2: Solo Piano

- Both methods perform comparably in melody transposition for synthetic solo piano (item no.3)
- MODVOC is preferred in terms of melody and timbre
 - → HL performs well for this test signal
- DNA has instabilities and segmentation induced artifacts

Original Original transposed

MODVOC

DNA All

Summary

- Enhanced modulation vocoder (MODVOC) for selective transposition of pitch
- MODVOC capable of real-time processing (single-pass)
- Reproduction of transients improved by LPC based envelope shaping (ES)
- Timbre improved by harmonic locking (HL)
- MODVOC is preferred over commercial system (DNA) in transposition of melody and chords
- DNA is preferred over MODVOC in timbre preservation
- Absolute scores for both systems range from "fair" to "good"

